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Specific Heat of Solids

Welcome. In this part of ah the lectures, we are going to use the principles of molecular

thermodynamics that we have learnt in this course so far and see the applications through

different systems. And in today’s lecture, we are going to consider the specific heat of

crystalline solids.

(Refer Slide Time: 00:33)

Now, if we look at the experimental data on the ah molar heat capacity ah metallic silver,

what we find that this actually exhibits a ah non-monotonic increase as temperature is

increased from very small values very close to 0 Kelvin to the higher temperatures like

say 300 Kelvin. So, what we find is here initially the values are very close to 0 then there

is  an  increase  and what  happens near  the top  is  it  is  attaining  some constant  value.

Actually  these  ah  this  particular  behavior  is  not  ah  ah  specific  for  ah  the  kind  of

[vocalized-noise] ah system for which I am showing the experimental data rather this is

representative of the typically what you observe as you the measure the specific heat of



the solid. When you are at a very high temperature, then it is found that all the ah solids

exhibit a constant value of the heat capacity.

You must  have  studied ah  this  observation  in  your  high school  days  in  the  form of

Dulong-Petit  law. It  is  one of the most well-known experimental  observations  in  the

studies of property of solids therefore, all the solids generally when present at a very

high temperature in that case we would find that they exhibit  a constant value ah of

specific heat ah equal to 3 R, where R is the universal gas constant.

Now, what  happens  if  I  go  down  to  lower  temperatures?  When  I  go  to  very  low

temperature what I find is as T goes to 0 from this constant value the C v rapidly drops

down to 0, and at absolute value of ah ah 0, its ah term which is expected to be very very

small and nearly 0. Now, the way it approaches zero at very low temperatures has been

the subject the subject of investigation in the very large number of studies and in this

case there was a law which has been formulated based on the generic behavior found for

a very wide range of solids and this is known as the T cube law.

So, what does the T cube law say, the T cube law says that as the system goes from a

lower temperature to a very low temperature then it rapidly falls down. And this fall is

having a temperature dependence in the sense that in this region C v varies as T cube as

one goes from a low temperature to even lower near zero temperatures. Therefore, it is

very  clear  that  if  any  microscopic  modeling  of  this  particular  system like  a  solid  a

crystalline solid is ah needed, it has to reproduce this kind of the set of three different

limiting behavior of specific heat. So, but before we go into that let us review a few more

experimental cases where this T cube law has been observed.
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So, what is found is this is a measurement of the heat capacity of different solids at ah ah

function  of  temperature  at  very  low  temperature,  and  this  is  the  measurement  for

potassium. And here you can see that along the y-axis [vocalized-noise] x-axis, we are

plotting T square; and here on the y-axis, we are plotting C by T. Therefore, it is found

that C by T goes as T square [noise] for these plots for this system which means that C at

low temperatures employed here, they vary as T cube. 
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Similar trend is observed when you consider systems like gold or copper. So, once again

at very low temperatures if you look at the kind of low temperature that is accessed by ah

these kinds of these experiments you find that the T cube law that is C varying as T cube

is valid. So, then the question is all the ah relationships that I am showing to you applies

to  mono  atomic  solids  I  have  done  that  ah  actually  to  keep  the  treatment  and

understandings of the systems very simple. But this kind of behavior ah can also been

seen for much more complicated solids as well, but for the purpose of today’s lecture I

am not going to cover them.

(Refer Slide Time: 05:49)

So, now going back the task is for a given mono atomic solid which is crystalline in

nature. So, I need to find out or calculate the specific heat of that crystalline solid. And

for  this  purpose,  I  am  going  to  use  the  formalism  of  canonical  ensemble.  So,  the

prescription by now must be very clear  to you. You first find out the single particle

partition  function  for  the  given ah  system then  you calculate  the  canonical  partition

function for the entire system provided. You can represent the constituent particles of the

system as capital N independent non-interacting single particles. Now, obviously, once

you  can  calculate  capital  Q,  you  can  follow  the  prescription  of  molecular

thermodynamics, and calculate internal energy U and then take a temperature derivative

ah to ah of ah U to find out the specific heat.



So, now, how do I implement this computational  scheme when I am talking about a

system like ah [vocalized-noise] silver solid or copper solid or gold solid and so on and

so forth ok. So, for that I realize that this part is fairly standard by now we have now

tested the predictions of this  prescription for many different systems that are exactly

solvable given quantum mechanics. So, we know what ah E js are what js are. So, we

could  calculate  small  q  and  follow  this  prescription  to  ah  get  the  thermodynamics

properties.

But when I have a solid at hand what I understand is here the information that I must

provide  are  as  follows.  So,  what  are  these  microstates  [vocalized-noise]  that  I  ah

[vocalized-noise] represent using the index j [noise]. And if I know these microstates

what would be the associated energy value eigen values of E j. Now, in a solid as you

understand that uh they are constituent particles. So, if in I have a mono atomic solid in

that case the constituent uh constituent particles are atoms, and these atoms are strongly

interacting  with  each  other.  And  therefore,  you  cannot  exactly  solve  the  quantum

mechanical ah equations namely the Schrodinger equation for a system, for a system like

this which is comprised of a very large number of strongly interacting atoms.

So, the next question that we ask is, is it possible to describe the microstates in such a

way that I can still use the exactly solvable models of quantum mechanics to model the

single particle canonical partition functions small q. So, this is exactly what I am going

to do step by step in the next few slides that I discuss here.
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So,  let  us  first  look  at  the  established  microscopic  view  of  a  crystalline  solid.  So,

typically you may have studied in solid state chemistry that if you can generate ah a

mathematical array of points which is described in terms of lattice, you can put in the

atom the [vocalized-noise] atomic solid at these lattice point. And for example, here I

have shown you some ah ah different ways in which you can create two-dimensional

lattices by varying the spacing between the lattice points, the angle through which is

connect ah connecting vectors um are related to each other and so on and so forth. And

basically then what happens is once you have a basic ah ah pattern defined in the unit

cell in that case what you can do is you can then go on repeating it in one direction or the

other. For example, here in this case, the basic unit is a hexagonal ah unit this is been

definitely repeated periodically ah in the x and the y direction and that gives you a ah ah

crystalline two-dimensional face.
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Now, of  course,  most  of  the  solid  systems  that  we  encounter  are  based  on  three-

dimensional ah crystal structures, where the unit cells contain the atoms arranged in a

specific  manner  in  the  [vocalized-noise]  lattice  giving  rise  to  rather  exotic  three-

dimensional structures [vocalized-noise] such as a one of dimension here or this is a very

complicated structure of a molecular solid. But as chemists we always think about the

structure as a unique structure, unique microscopic view of the crystalline solid. And this

is the ah this of course is the unique repeating unit as you see here or here or here that

will build up the structure.

But what we most of the time do not realize is that this is not the only structure possible

[vocalized-noise]  for  the  microscopic  state  of  the  solid.  So,  [vocalized-noise]  what  I

show you here is a representative microscopic state of the solid which would be obtained

by  taking  one  unit  like  this  and  repeating  it  if  a  three  dimensions  periodically  and

indefinitely in the x, y and z reduction. So, you will get a big ah cage like structure. And

we would say that well this is a unit structure of the solid at the microscopic level. And

now I am going to show you that of course, at finite temperature this is not going to be

the unique structure of the solid, and there are many many other possibilities.
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So, let us see why I say this [noise]. So, first of all to keep the things simple I am taking

a two-dimensional ah system where these atoms have been placed at the ah corners of a

ah [vocalized-noise] corners of this square creating a regular pattern in the x y direction.

Actually, I have not shown you the regular pattern in the y, I am highlighting only this

portion ok. So, now, it so happens that at finite temperature these atoms I want to have

some  amount  of  thermal  energy  given  by  Boltzmann  constant  multiplied  by  the

temperature in absolute units.

Now what will happen there simply because these atoms belong to ah solid they are

strongly correlated to the neighboring particles that are present on the neighboring sites

of the lattice, therefore, these atoms can actually have only very limited options to use up

the available thermal energy at a given temperature. So, this is how they can use it up.

So, if you have a closer look at this picture, you see that this atom is more or less present

at  its  equilibrium  position  at  the  lattice  point.  But  look  at  this,  this  atom which  is

originally present at the center with its lattice point has moved in this direction. And this

atom [vocalized-noise] from its ah equilibrium lattice point has moved away, so that the

distance between this is larger why because of the movement of these two atoms, this

distance becomes smaller than the lattice spacing.

So, basically what we are looking at are the possible changes associated with the thermal

motion of the atoms at and around the lattice points. So, it may so happen here I have



been highlighting their displacement along the x-axis, but if it so happens that they are

displaced along the y-axis. So, this is a perfect arrangement of all the atoms along the y-

axis, and this is where all the atoms have undergone a positive displacement to higher

values of y. And this is an arrangement where each atom at the lattice point in this region

is undergoing a negative displacement in the sense that they move towards the negative

direction in the y-axis. And what is the net conclusion here we find that there is some

zones of higher density of particles compared to this, and this a low density region. And

here  very  clearly  we see  a  wave like  pattern  forming because  of  the  motion  of  the

individual atoms.

(Refer Slide Time: 15:17)

Now what are these motions? So, if we have a look at the combination of the motion of

the atoms around the lattice position either in the x direction or in the y direction, so the

net  result  would  be  a  collection  of  elastic  waves  with  a  spectrum  of  wavelength,

amplitudes and directions running through the crystals. So, I have several atoms strongly

correlated  to  each  other  present  in  the  system,  and  they  are  collectively  undergoing

displacement at along the two degrees of freedom available to them x and y. And simply

because  these  are  solid  atoms,  they  can  only  execute  a  small  amplitude  vibrational

motion about their mean equilibrium position which is at the lattice points. Now, in the

literature these collective oscillations resulting from the displacement or the vibration of

this  atom  about  their  mean  lattice  position  ah  these  collective  oscillations  when

quantized I have given the name phonons.
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Now, let us have a ah visual ah look at the kind of different kinds of ah ways in which ah

the atoms ah the molecules or the particles in a lattice can use up the available thermal

energy. The first one that I show here is a longitudinal wave. And as you see that in this

case, you [vocalized-noise] in a entire wave front is moving in this direction.  On the

other hand, when I have a transverse wave, then the way the wave travels through the

system is pretty different.
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So, now, if I go [vocalized-noise] back and look at what is happening to each of the

particles in the medium due to whose displacement these different types of waves are

coming into the picture. If you focus your attention to a particle here, you see that it is

basically oscillating in the x direction. On the other hand, if I look at and [vocalized-

noise] it is because of the oscillation periodic oscillation of similar particles, I get the

wave front moving in along the x direction, which is the longitudinal direction in this

case.  Similarly, if  we look at  the motion  of  this  particle,  this  is  ah this  you can  ah

[vocalized-noise] follow and see that how it is moving it is remaining in this phase, but

how two different particles are moving through the medium through their displacement.

(Refer Slide Time: 18:06)

Now, if you are looking at the surface of the solid; obviously, the pattern of vibration the

collective  vibration is  going to  be different.  So,  these are  ah what  are  known as the

surface waves ok.
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And if actually if you look at a single particle on the surface you find that this particle

actually is executing a very interesting circular motion and that is given rise to and when

all the particles on the surface do so together the collective motion that we see that ah

seen shown in terms of this wave. And these are known as surface waves.

(Refer Slide Time: 18:47)

So, having these different  types of ah structural  fluctuations  available  to  us then the

question is ah well what are going to be then the different microscopic states when we

are considering the crystalline solid.
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So, one way of doing it is; obviously, use the ball and spring model. So, you place a ball

at every point on the lattice and then you represent the strong correlation between the

position of this atom and this atom in the solid by placing a tight spring between them.

So, in that case a two-dimensional solid can be schematically represented like this.

(Refer Slide Time: 19:37)

Again, we can have the similar representation of a three-dimensional ah unit cell of a

solid by connecting the corners of a cube with respect to ah ah with the help of a spring.

So,  basically  what  we  are  seeing  here  is  if  I  want  to  know  what  this  complicated



vibrational patterns are, what do I have to do. I will have to say that well I assume that ah

[vocalized-noise] each atom is connected to its nearest neighbor via some springs which

obey the Hook’s law. In that case, what I have is either in two dimension or in three

dimension, I have a the [vocalized-noise] net vibrational pattern generated by a set of

coupled simple harmonic oscillators.

Now, if you ah think about classical mechanics or ah or mathematical problems of ah

[vocalized-noise] solutions of partial differential equations, the solutions of this kind of

ah problem is known regarding how to represent the coupled ah oscillation of ah um

number  of  ah ah couple  simple  harmonic  oscillator  in  terms of  an equal  number  of

independent simple harmonic oscillators.

(Refer Slide Time: 21:14)

So, this is something that is known and I am not going to show you the solution rather

tell  you qualitatively  that  [noise]  when you solve these coupled oscillation  oscillator

problem for N-atoms in a three-dimensional lattice we get 3N vibrational modes. So,

basically what you say is each of these vibrational modes now behave as if as if they are

a simple harmonic oscillator and they are associated with some kind of a wave factor and

[noise] each wave factor of this 3N vibrational modes have a characteristic wavelength.

And therefore,  as  you see that  you can then say that  this  particular  ah um solid its

microscopic states can be described in terms of 3N simple harmonic oscillators which are

independent of each other that is something that is achieved by the mathematical solution



of the problem of coupled ah ah harmonic oscillators. And each of these ah [vocalized-

noise] simple harmonic oscillators are characterized by a wave factor k i ah that is ah

related  inversely  to  the  wave  length  of  the  underlying  vibrational  pattern  like  the

[vocalized-noise] underlying ah ah simple harmonic oscillator representing the particular

vibrational pattern.

(Refer Slide Time: 22:38)

Now, here energies of these collective modes, collective vibrational modes according to

quantum mechanics at the microscopic level these are quantized. So, these quantized ah

energies of the vibrational modes are called phonons. So, the different microscopic states

of the crystalline solids are described in the [vocalized-noise] terms of these phonons and

we  understand  that  there  is  a  large  number  of  phonons  present  that  describe  the

accessible microscopic states of the crystalline solids.
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So, at this stage, we can revisit the Einstein model of ah solids and say that well here I

am going to describe the ah vibrational ah motion of atoms in terms of a collection of 3N

simple harmonic oscillators at a given temperature and volume. And let us also assume

that  all  these simple harmonic oscillators  have the same angular  frequency. And this

frequency is given this name Einstein frequency.

(Refer Slide Time: 23:50)

If that happens then from the prescription of ah ah molecular thermodynamics, we can

very easily say that for these collections of 3N simple harmonic oscillators, I can always



write down what the single particle canonical [vocalized-noise] partition function is. And

I understand here instead of  any intrinsic  frequency, I  am using the same frequency

omega E for each of the oscillators present in the system.

(Refer Slide Time: 24:19)

Now,  in  this  way,  once  I  know  small  q  following  the  prescription  of  molecular

thermodynamics  I  can  very  easily  go  and  derive  this  algebraic  expression  for  C  v.

Actually, it is more customary to introduce the Einstein temperature which is nothing but

the Einstein frequency multiplied by h cross divided by the Boltzmann constant and in

terms of Einstein temperature then the specific heat turns out to be an expression like

this.

So, as you see that by having the microscopic model of the solid in terms of the ah

different ah vibrational collective vibrational motions, we have been able to express the

specific heat as a function of temperature because temperature appears over here. And

the characteristic properties of the system in terms of its [vocalized-noise] microscopic

parameters appeared here in terms of this Einstein temperature. So, for given values if

you can measure the values of Einstein temperature then you should be able to ah find

out how C v varies with respect to temperature that is exactly what one does next.
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So, [vocalized-noise] what [vocalized-noise] I have shown here in this picture is what

will be the calculated value of C v at a different temperatures and the solid lines are

giving you the variations of C v calculated first at theta E equal 1220 Kelvin and then

theta  E at  1300 Kelvin.  And this  square boxes are the initial  measurement  of the ah

specific  heat  values  of  the  solid  which  is  diamond.  So,  now,  one  has  this  unique

opportunity to look at  the ah the fact that there is clearly a discrepancy between the

theoretical prediction and the observed variations in the ah ah in the specific ah value

values at very low temperature.

So, the question is how good is the Einstein model? In order to understand this as I said

the experimental data is interpreted I ah by looking at limiting ah ah limiting behavior at

high  temperature,  low temperature,  and  what  happens  in  between.  So,  at  very  high

temperature, if you look at the expression for ah C v as predicted by the Einstein model,

you will find that this quantity actually would go to 1. Whatever appears here in the on

the right hand side, this will go to 1 ok, because I have 1 by T here, so as T goes to

infinity these goes to 1. And if I expand them what I have on the right hand side is one

minus E to the power of minus theta E by T and this I can write as 1 minus 1 plus theta E

by T.
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So, in the expression for C v by 3 R, now I have theta E by T whole square into 1 divided

by theta E by T whole square. And therefore, in the limit where T is very high this term

goes to 1 which means in the limit T tending to infinity I must be having C v tending to 3

R now that is a successful reproduction of the Dulong-Petit law. Now, let us have a look

at what happens when T goes to 0. When T goes to 0, I have the entire expression if you

use the L-Hospital’s law, you will be able to show it very easily that C v will also go to 0.

Now, here comes the most important observation that tells us that not everything is well

with  Einstein  model  of  solids.  So,  what  I  find is  here  if  I  plot  the low temperature

behavior of the of C v in the measured data, I find that it eh it follows the T cube law. But

if I once again look at the behavior of C v as a function of temperature for small values

of T, I find that it will go as T square ok. So, this means that in this particular case I do

have this problem that Einstein model although it could produce the high temperature

behavior of the solid successfully, it was not able to explain the entire range of behavior

of the solids, the specific heat of solids, and it failed especially in the low temperature

region. So, in the next lecture we are going to examine the short comings associated with

the assumptions present in the Einstein model, and then review the corrections and the

improvements suggested by Debye and its subsequent study of the specific heat of solids.

Thank you.


