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Welcome,  we  will  continue  our  discussion  on  the  application  of  basic  principles  of

molecular thermodynamics of statistical thermodynamics to an ideal gas.
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And you have already seen how the fundamental concepts developed by the molecular

thermodynamics use developed within the frameworks of molecular thermodynamics can

be used to successfully explain the variation of specific heat of the atomic ideal gas. And

also explain why it why it should be different from mono atomic ideal gases, and under

what condition the structure, the presence of a structure in a diatomic molecule is going

to  be  reflected  in  the  thermodynamic  property  of  it  is  that  that  is  measured  at  the

microscopic level.

Today, we are going to talk about another very interesting case which I  label  as the

curious case of hydrogen gas. Now why do I say that is a curious gas case? If you look

back at the fundamental properties of hydrogen gas, in terms of the hydrogen molecules,

we find that the disassociation constant is about 432 kilo joules per mol.
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And then we also find that ahah the theta rot and theta vib the rotational and vibrational

temperatures for this system these are known. But what is interesting over here if you

compare the values of theta rot observed here to the once that we have discussed so far,

you find that theta rot for hydrogen is a very large number.

If you would remember, for hcl this was roughly about 15 kelvin, and for k 2 vapor this

was less than one kelvin. And therefore, when you think about hydrogen gas, and it has

such a high rotational temperature, it gives rise to certain unique behavior that we are

going  to  be  interested  in.  Now  in  the  case  of  the  homo  nuclear  hydrogen  gas,  we

understand that each nuclears has a nuclear spin of half and correspondingly we have

discussed  in  detail  how we can  write  down the  overall  contribution  to  the  partition

functions single parti particle partition function from a symmetry allowed combination of

the  rotational  energy  states  with  the  nuclear  energy  states.  So,  following  those

prescriptions  we find that  this  contribution  to  the single particle  partition function is

going to be comprised of 2 parts.

And therefore, you understand that in the case of hydrogen gas all the thermodynamic

properties  are  going  to  be  having  2  different  contributions;  one  arising  from  the

symmetric contri symmetric associated with the symmetric nuclear wave functions, the

other one is associated with the anti-symmetric nuclear wave function. Now what is the



consequence? People actually were aware of these difference in the underlying molecular

structure for a long time, even before the emergence of the of quantum mechanics.

(Refer Slide Time: 03:49)

So,  in  this  case,  the  chemists  in  particular  they  were  aware  of  2  types  of  hydrogen

molecule one is called the para hydrogen; which now we understand is associated with

the anti-asymmetric  nuclear spin wave function,  and accordingly, we have only even

rotational energy levels allowed for the system. And for the ortho hydrogen, we have a

symmetric nuclear spin, and only odd rotational energies are is are allowed. And so, this

is the schematic representation, where in the para hydrogen all I am trying to say is that

if one is associated with ah some alpha as a nuclear function a nuclears spin function,

then and the other one is having beta; in that case, it is the anti-symmetric combination of

these  2,  nuclear  spin  function  alpha  beta  minus  beta  alpha  divided  by  root  2  that

represents the nuclear wave function for the para hydrogen. And the ortho hydrogen on

the  other  hand,  can  have  3  different  representations  corresponding  to  3  different

symmetry allowed a wave nuclear wave function.

Now accordingly we can just go back and use the q rot to find out the average number of

ortho and para hydrogen molecules at a given temperature T.
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So, as you see that this ratio, that is going to be dependent on at what temperature, we are

making the  measurement  ok,  and then we can  very easily  say that  well  for  a  given

temperature,  I  can always predict  what  is  going to  be the fraction  of  para hydrogen

molecules in the assembly of ortho and para hydrogen. And accordingly, I can calculate

the percentage of para hydrogen molecule in a given system. From the known fraction,

now simply because this ratio of N ortho and N para are dependent on temperature.

Therefore,  I  should  get  this  percentage  of  para  hydrogen  in  equilibrium  with  ortho

hydrogen at different temperatures, this must be a function of temperature. So, this is

what is plotted over here. So, as you see that this percentage of para hydrogen is a strong

function of temperature, initially at very low temperature my system is comprised mostly

of para hydrogen. And then as you increase temperature, the percentage of para hydrogen

decreases. 

And  finally,  when  you  are  near  about  the  room  temperature,  what  you  find  is  the

equilibrium mixture of ortho and para hydrogen is nearly 25 percent para hydrogen, and

it is dominated by the ortho hydrogen. And therefore, we can conclude by looking at this

theoretical  calculation  that,  if  I  have  a  equilibrium  mixture  of  the  ortho  and  para

hydrogen,  then  at  low  temperature  the  para  hydrogen  is  going  to  dominate,  the

population of the equilibrium mixture.  But when I  go to high temperatures,  then the

dominant contribution will come from ortho hydrogen in the equilibrium mixture.
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With this background in mind then, obviously, one can calculate using the formalism oh

ah molecular thermodynamics, what is going to be the overall specific heat of molecular

hydrogen gas present at a given temperature, within confined within a volume. So, as

you see that that would be given by the fraction of the ortho hydrogen multiplied by

whatever is the pre-prediction of Cv for the ortho hydrogen as obtained from the q rot

nuclear plus.

The corresponding quantity from the para hydrogen. And if I do that then these are the

results of the rotational contribution to the overall specific heat of hydrogen molecule.

So,  what  you  have  here  at  a  given  temperature  T,  a  low  temperature  T  then  we

understood that if the mixture is entirely comprised of para hydrogen, this is how the Cv

will vary with temperature. Had it been entirely comprised of the ortho hydrogen? This is

how the specific heat would change with temperature. 

But since we know that the under realistic condition, if there is an equilibrium at that

temperature between the ortho or para. And especially if we are looking at a very low

temperature, then for this equilibrium mixture, it can be very easily calculated that this is

going to represent the variation of Cv for the ah equilibrium mixture. But now we see if

we do a measurement at low temperature the experimental data is what you see here

through this white dark blue line. 



So, this is the prediction of theory that you see for the equilibrium; where you have

shown that  if  there is  an equilibrium between the ortho and para hydrogen at  a low

temperature, where it is dominated by the para hydrogen, this should be the variation.

But in the experiments this is what you get. So, basically this experiment was carried out

long back in the very early days of quantum mechanics. And therefore, people started

asking this question is quantum mechanics valid I mean this is something that we are

observing.

And very clearly Description of the underlying molecular structure of hydrogen molecule

using  the  results  of  quantum  mechanics,  apparently  was  unable  to  explain  the

experimental data. So, where was the problem. So, this actually led to a lot of debate and

a lot of thought and scientific investigations where invested in solving this problem. And

this is what was found out to be a clue to the solution of this problem.

(Refer Slide Time: 10:35)

Now, here  this  particular  picture  that  I  have shown here,  this  assumes that  at  every

temperature the percentage of para hydrogen is a function of temperature. And at a given

temperature,  this  is  the  percentage  of  para  hydrogen  if  para  hydrogen  is  residing  at

equilibrium with ortho hydrogen in that temperature.

Now  if  so  happens  that  you  can  think  of  well,  this  is  the  composition  at  room

temperature, where I have 75 percent ortho, and 20 and 25 percent para hydrogen. Now

for this mixture, let me say that if I calculate the corresponding rotational contribution to



Cv, what will happen? So, I will take 75 percent of the Cv for the pure ortho hydrogen.

Plus, 25 percent of the Cv of the para hydrogen, add them 2 up and get the Cv for an

equilibrium mixture, had it been 75 percent ortho? And 25 percent para. Now the result

of the calculation was extremely interesting. This is the result of the variation of Cv with

temperature when we use this 3 is to one combination at low temperature. 

So,  at  that  very  low temperature  this  is  what  you have  expected  had there  been an

equilibrium  between  the  ortho  and  the  para  hydrogen  as  predicted  at  this  low

temperature. But actually, what we find is that by during the experimental measurement,

the experimental data actually very easily very nicely is reproduced by this 3 is to one

mixture, which we expected to survive only at very high temperature in equilibrium. So,

what is happening here? So, if I go back and look a little more closely into additional

experimental data.
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What we find is that the conversion of ortho and para hydrogen is actually very, very

slow if there is no catalyst used. And when hydrogen is prepared at room temperature,

we prepare a mixture where ortho hydrogen is dominating the equilibrium mixture. Now

while performing the specific heat experiment at low temperature, you cool down the

system to  lower  temperature,  but  what  happened  is,  when  you took  it  to  the  lower

temperature, then the same ratio relative amount of ortho and para persisted. 



So, what we have at that low temperature for the heat capacity measurement was not the

equilibrium mixture at that particular temperature, but a meta stable mixture which had

75  percent  ortho  and  25  percent  para.  So,  obviously,  one  would  question  that  this

explanation is going to be valid provided you do something else.

(Refer Slide Time: 14:02)

And what  is  that  particular  experiment  that  was  carried  out?  It  was found from the

literature of chemistry, that a rapid conversion of ortho and para hydrogen occurs in the

presence of activated charcoal as a catalyst. Now if the measurements of ah specific heat

of hydrogen at low temperature was carried out in the presence of activated charcoal,

then you would expect that the population of ortho will rapidly get converted to para at

low  temperature,  even  if  I  am  having  a  low  temperature.  And  then  if  you  do  the

measurement, what you find is that the experimental data agree very well with how the

specific  heat  should  vary  with  temperature  at  very  low  temperatures  if  there  is  an

equilibrium mixture.

So,  this  is  one of the major  triums  of  the framework of molecular  thermodynamics,

which told us that not only we can explain how the specific heat ah of the given atomic

molecule will vary with temperature, but we could look very closely at the 2 different

types of nuclear spins is present in molecular hydrogen, and then correlate the observed

experimental data to the calculated results obtained using the fundamental framework of



molecular thermodynamics. And I would also like to highlight over here, that this kind of

behavior you can very easily understand that it.
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Also extends to the cases of specific heat measured at low temperatures for not only

hydrogen molecule, but also for HD gas or hydrogen and H 2 and D 2 gas.

So, all these informations that you see here; which results of measurements, they can be

justified within the framework of molecular thermodynamics. So, in this lecture, as we

are  discussion  the  use  of  statistical  thermodynamic  or  molecular  thermodynamics  to

explain experimental data, let us pick up another experimental data that we know very

well for an ideal gas mixture.
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Now here I have highlighted the fact that, I am going to pick up a experimental data or

the law that has been formed by looking at a very large body of experimental data; where

I have a mixture of ideal gases, and the components do not interact with each other. So,

there is no chemical reaction present.

So, in this case the kind of system that I am talking about can be outlined like this .

(Refer Slide Time: 17:06)

So, I have a non-reactive mixture ideal gases, where a typical microscopic state looks

like this. So, I have in this picture how many different types of ideal gases? I have one



comprised of these red molecule, I have another one comprised of these green molecules.

And I have the third type comprised of this blue molecules. In general, we would say

that, one such gas mixture will be comprised of capital m ideal gases, and there will be

contained in a box of volume v at a temperature T. Now since this box is surrounded by a

rigid  impermeable  wall,  therefore,  I  would say that  the thermodynamics  state  of  the

mixture is very well represented in terms of a canonical example. Now ah here let me

adopt this notation that M i is the mass of each particle of type i.

Which means here in my case i varies from 1 2 3. So, here I will have 3 types of masses

N 1 for this, N 2 for this, and N 3 for this. Now I also understand that for each type of

particle i, there will be some number of particles present which I call N i. So, here in this

part I have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 10 molecules for of type 1, that is the red molecule,

therefore, in my case N 1 is equal to 10. Similarly, you can count 1, 2, 3, 4, 5, 6, N 3 that

is for the blue molecule, which is equal to 6 and so on and so forth.

Now, the daltons law of partial pressure tells us that you can in principle measure the

pressure of the gas. That is present under this condition, and if this mixture is present

under the condition of a given temperature and given total pressure, then this is going to

be a sum of the individual partial pressures pi, now what is the definition of pi? Pi is, if I

had  the  same box of  volume v maintained at  the temperature  t,  but  not  having this

mixture it is let us say that it is filled with only the red molecules. So, these molecules

will not be there, then if I could measure the pressure of this gas, this would be P 1 for

the red gas which I given index of 1. So, if I could get this partial pressure P 1 P 2 P 3

etcetera.

Under the identical conditions of constant temperature, then I would say the constant the

total pressure of this mixture ideal gas mixture is going to be equal to a sum of their

partial pressure. Now the question that I am asking here is as follows; is it possible for us

to use the formalism that we have developed within molecular thermodynamics to derive

a relationship like this. And that is exactly what I am going to do in the next few slides in

this lecture.
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So, here there are certain assumptions which are very, very important, I understand that

each of the component gases they behave like an ideal gas. And also, I understand that

the molecules of gas I do not interact with the molecules of gas j. So, that the mixture on

the whole acts as an ideal gas mixture.

(Refer Slide Time: 21:04)

And therefore, now I have in my mixture N one particles of type one for which the single

particle partition function can be written as q 1, I have N 2 particles of type 2 for which

the single particle partition function can be written as q 2 and so on and so forth ok. If



you  I  have  capital  N different  types  of  particles,  then  the  associated  single  particle

partition  function  is  going to  be  q 1.  And since  for  each type  I  have  identical  N 1

particles corresponding to the type i, therefore, for this type the single particle partition

function taking this N 1 identical particles together is going to be q 1 divided by N 1

factorial. Similarly, for the type 2 this is going to be q 2 to the power of N 2 divided by N

2 factorial.

Now, what happens since the molecules of type one are independent of molecules of type

2 and so on and so forth, therefore, I can write down the total canonical particle partition

function for the system like this. And this means what? In general, in the short hand

notation, I should be able to write down capital Q as a product of these numbers, where I

have for the ith ah type of particle, qi raised to the power of ni divided by ni factorial. 

Now if  I  have  mixture  of  ideal  gases  that  I  am handling  at  microscopic  level,  we

understand that each of the ni values are going to be very large like, we mix one mole of

hydrogen with 3 moles of nitrogen. So, that is how many hydrogen molecules? Avagadro

number of hydrogen molecules, and 3 times the avagadro number of nitrogen molecules.

So, each of these numbers ni are very, very large. And therefore, while calculating the

logarithm of capital Q i can use the (Refer Time: 23:09) approximation. With that I arrive

at this  kind of an expression for l  N cube.  So, what is  the consequence? Obviously,

whenever I am using the formalism of molecular thermodynamics within the canonical

(Refer Time: 23:25), then I actually require capital Q.
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So, when I go ahead and calculate the pressure of this mixture, then I need to understand

how l and q explicitly depends on volume. Now if I examine the expression for l and q,

what I find here is that l and q is nothing but contributions coming from this term, this

term and this term. And the and the last 2 terms are independent of volume.

So, I  have to focus on what  small  qi  is,  and this small  qi  is  this  term multiplied by

whatever internal structure that the system has. Therefore, I would say that the explicit

volume dependence on lnq arises from this lnv term. And therefore, if I go ahead and

calculate the pressure, then what will happen is, I should be able to write down lnqtvn as

lnv multiplied by this sum, plus atom that is independent volume ok. And it is a constant

at  a given temperature,  and the total  number of particles,  is  that  happens then I  can

rewrite this expression do a little algebra.
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And we write this expression, I introduce this number capital N which is a sum of all the

individual Parti number of individual particles present in the system.

And then, I can say that lnqtvn is N lnv plus atom that does not depend on volume

explicitly, and is a constant at constant temperature and total number of particles. Now

when this happens, when I calculate pressure, so, obviously, pressure is given by del v of

lnv with this P factor. And I find that pressure now is given by as before it is capital N

kbt by v, but here this capital N is not the total number of particles of one type, but rather

it is the total number of particles taken all the different N types together ok.

So, once I understand this, what I find is that I have a achieved the following. I started by

saying that this is an ideal gas mixture, I have different N different types of particles,

therefore, I could write the canonical partition function like this, and then I will write the

total pressure of this ideal gas mixture as this where N is nothing but this quantity. So, let

us put this back in the expression and this is what you are going to get. Once you get that

you please remember that we will assume that each component gas in this gas mixture

also behaves ideally. 

So, in that case I must be able to say that if each component gas was present at the same

temperature, at for the same volume occupying the same volume, and they were still N in

particles of the type I then what would have been the pressure that pressure would have

been pi.



(Refer Slide Time: 25:56)

This by definition is the partial pressure of the ith component. Now look back what is it

that we have achieved over here. We have achieved in writing down the total pressure of

the system as a sum of this quantity. And this quantity is nothing but the partial pressure

of each of the components present in the system by definition. And then what you do is

combine you these 2, and write this down and that is nothing but daltons law of partial

pressure. So, here the key to understanding the derivation, is that you have N different

types of particles which are not interacting with each other. Now for a given type, you

have anion molecules or anion atoms which are identical to each other. So, you must be

very careful when you write down the total canonical partition function of the system. 

And the rest of it is daily routine, and in knowing the definition of the partial pressure,

that you can obtain the daltons law. So, what we have learnt from this particular lecture

is  a  fact  that  if  I  have an ideal  gas,  starting  from the Hamiltonian,  I  can model  the

microscopic state of the molecules or the atoms present in the system. And then using the

formalism of molecular thermodynamics within the canonical (Refer Time: 28:43) I can

try and reproduce many of the experimental results, that are known in the literature, that

were  derived  from  different  kinds  of  experiments.  And  apparently  there  was  no

connection between each other except for the fact that all these working systems obeyed

the ideal gas law.



Therefore, the success of molecular thermodynamics principles that we are discussing

here is that we can start by microscopic modeling of an assembly of atoms or molecules,

and go ahead and have a look at  how these molecules this  assembly of a very large

number of molecules; for example, I can given temperature and constant volume, can

give rise to specific thermodynamic properties like a specific temperature dependence of

the heat capacity of ideal gases, or the daltons law of partial pressure, or even the very

curious case of molecular hydrogen gas.

Thank you.


