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Welcome. So, today we are going to discuss the application of the principles of statistical

thermodynamics or molecular thermodynamics to a diatomic ideal gas, starting from the

canonical partition function..
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We  have  already  seen  that  if  I  have  a  diatomic  ideal  gas  maintained  at  a  given

temperature, volume and there are capital n molecules present in the system. Then the

canonical  partition function can be expressed in terms of the single particle  partition

function like this and then in order to calculate capital Q we need to model a small q and

we have discussed at  length,  how to use the rigid rotor simple a harmonic oscillator

approximation to estimate this small q; and once you know how to estimate small q for a

given  value  of  temperature  volume  and  number  of  particles  one  can  go  ahead  and

calculate  capital  Q,  and  from there  using  the  bridging  relationship  in  the  canonical

ensemble we can directly obtain the Helmholtz free energy and of course,  when you

know  one  thermodynamic  property  then  you  can  derive  all  other  thermodynamic

properties such as by knowing lnQ, I can find out what capital Q is and then analyze the



different  contributions  coming  to  this  overall  value  of  this  internal  energy  from the

motion of the center of mass of the molecule or the rotational motion of the molecule or

the vibrations of the chemical bond connecting the 2 nuclei in the nucleus; and also the

electronic energy of the molecule constituting the diatomic ideal gas.
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Now, we have already seen how to obtain the ideal gas equation for any such system,

where basically by knowing small q and knowing capital Q hence we can find out the

pressure as the volume derivative with respect to constant temperature and the number of

particles  of  the quantity  lnQ and therefore,  it  is  very easy to  see that  that  explicitly

volume dependent term in capital Q arises through q trans and in the diatomic case this

small m that appears in q trans that is a mass of one molecule and explicit dependence on

V comes  through  this  factor  and  therefore,  if  you  estimate  p  using  the  well-known

relation between p and the derivative of lnQ you get back the ideal gas equation .
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We have also discussed in the last lecture how to establish the variation of chemical

potential as a function of temperature and pressure for an ideal gas so; obviously, we do

expect that irrespective of whether I have a monatomic ideal gas or a diatomic ideal gas,

this kind of form should hold . Now if I look at what mu is by definition mu can be

obtained from lnQ by taking a derivative with respect to the number of particles under

the condition of constant temperature and constant volume..

Now following the steps that we have used in the previous lecture, it is possible to show

now; that we are capable of writing down the explicit expression for mu , which involves

contribution  from  the  translational  term  ;  which  also  involves  the  other  degrees  of

freedom which contribute in terms of q rot q vib q electronic and q nuclear and therefore,

we can say that well we now identify here at pressure p naught equal to 1 bar, one term

that  appears  that  is  dependent  on the nature  of  the gas;  that  you have  and the  only

thermodynamic parameter that appears is temperature ok. And therefore, the dependence

on pressure comes through this particular term just as in the case of the monoatomic

ideal  gas and therefore,  the source is  once again yes,  the translational  motion of the

molecule on the whole in the overall volume capital V.

Now, once we understand this therefore, even for the chemical potential we understand

that if these terms are important , if they have some significant values then the value of

mu naught T which is represented here in this  box is going to have signature of the



underlying microscopic structure of the diatomic molecule ok. So, in the next part what

we do is we will now go ahead and try to look at the calculation of q vibration, because

in the case of diatomic molecules; this is the first factor where the diatomic molecules is

are going to be different from the monatomic cases. Now we have already discussed

what happens if there is a harmonic potential describing the stretching and compression

of the chemical bond connecting the 2 atoms in our diatomic molecule..
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So,  here  is  a  representation  of  a  typical  diatomic  molecule  where  for  the  sake  of

simplicity we have used a spring as shown here to represent the vibrational behavior of

the chemical bond connecting the 2 atoms.

So, this is a simple ball and spring model; for which the potential energy is known and as

a result we can very easily say that this is how the potential energy on which the 2 atomic

nuclei move with respect to each other would vary as a function of R where R is the inter

nuclear distance between the 2 atoms..

Now when you see this you also know that we know that the different vibrational energy

states are the ones corresponding to v equal to 1 or 2 or 3 etcetera . And there are a

discrete number of a discrete energy states possible depending on which value of small v

is accessible to the system ok.



So,  then  we  could  calculate  q  vib,  in  terms  of  this  theta  y  which  is  a  vibrational

temperature which depends on the annular frequency with which this spring moves and

then one  can  find out  q  vib,  but  when we talk  about  the  diatomic  molecule  as  you

understand; that the use of the harmonic potential for the movement of the 2 nuclei with

respect  to  each other  is  not  only approximate,  it  does  not  work at  long internuclear

separations; simply because if you have 2 atoms held by a chemical bond and if you are

cooling them apart at very large distances what will happen to the chemical bond, the

chemical bond will disrupted will get disrupted this chemical bond will get broken.

Now, this  scenario  is  not  present  when  I  look at  the  harmonic  potential,  see  in  the

harmonic potential it says that the energy goes on increasing, but it does not correspond

to the fact that there will be at some point beyond certain distance the chemical bond

between the 2 atoms will be broken. So, at the level of quantum mechanics this can be

rectified by noting that if you actually solve the Schrodinger equation for the diatomic

case like the hydrogen molecule, you find that this is a red curve in this picture that gives

you the actual potential energy over which the 2 nuclei move with respect to each other..

And this can be modeled using for example, the morse potential, but we are not going to

do  work  with  that,  but  rather  what  I  would  like  to  mention  here  is  although  the  2

potentials are more or less similar very close to the equilibrium bond length ; which is

here I understand that when the bond length becomes much larger there is a disruption of

bonds and the energy limit here is the energy of 2 non interacting isolated atoms which

are no longer bonded to each other.

So, what happens here is, we note that in this  case from the bottom of the potential

energy well up to this limit this is the estimated dissociation constant. So, this is the

amount of energy that you will require if there is no vibrational structure, and this is your

0  of  energy. So,  the  difference  between  the  2 energy levels  will  give  you the  bond

dissociation energy, but in practice. What happens? We have to worry about let us say

that the 0-point energy or the vibrational structure of the system when I am considering

this red curve representing the presence of the 2 nuclei still in there ground electronic

state. So, in that case the actual energy that I should be taking into account is from here

to here ok.



Now, if I use this then the vibrational energy states allowed for this kind of a system

where we have taken into account the disruption of the bond at long a large separations,

that is given by an expression like this . And this is actually rewritten by indicating this

term, that is D minus half h cross omega by D naught. And D naught is known as the

bond dissociation energy corrected for the 0.5 rational energy ok..

Now once we know this, as you see that instead of half h cross omega, now I have this

minus D naught  term.  But still  one can very easily  find out  what  the single particle

vibrational partition function would be, and that you can work it out yourself I will not

be doing the algebra here, but following the same logic and the same steps, that we have

discussed  previously.  You  will  be  able  to  show  that  the  single  particle  vibrational

partition function now will depend on b naught as expected. And as before there will be

this term in the denominator 1 minus a to the power of minus theta vib by T, where this is

the vibrational temperature.
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And  now  once  we  know  this  then  we  understand  that  if  I  know  the  vibrational

contribution to the single particle canonical single particle canonical partition function,

then I can go ahead and try to understand what is going to be the vibrational contribution

to the overall thermodynamic properties of the system. So, that can be very easily found

out,  and these  are  the  some of  the  results  that  you can  check as  an exercise;  using



everything that  we have learnt so far in this  course.  So,  what is F vib? F vib is  the

vibrational contribution to the overall Helmholtz free energy of the system .

This  is  the  vibrational  contribution  to  the  overall  internal  energy, and if  you take  a

temperature  derivative  with  respect  to  this  what  we  you  arrive  at  is  the  vibrational

contribution to the overall Cv, or the specific heat at constant volume . Furthermore, you

can go ahead and find out for example, the vibrational contribution to the entropy, and

the  vibrational  contribution  to  chemical  potential,  when  there  is  one  mole  of  the

substance present..
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Now with all this formula, it is very difficult to understand, what is the use of all these

formula. So, what we are going to do is, let us once again check for the additional part as

well, and then try to see what these equations and their values eventually in imply and

how we can use them.
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Now, if I look at the rotational contribution to thermodynamics in the case of a diatomic

ideal gas, we know that this contribution will come through q rot, and here sigma is the

symmetry  number  which  depends  and  it  is  value  depends  on  whether  we  have  a

homonuclear, or a heteronuclear diatomic system. Now if I go back then once again I can

find out very easily what is going to be the rotational contribution to the Helmholtz free

energy or to the internal energy or to the specific heat at constant volume .
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Similarly, you can extend these calculations and find out what s rot is going to be, and

what mu rot is going to be. But please remember, because we are using this very simple

expression for q rot we are getting away by not evaluating the infinite series summation

involving the rotational  quantum number j.  And therefore,  this  limit  is  valid  only at

temperatures where the temperature is much higher than the rotational temperature of the

system that we are interested in .

(Refer Slide Time: 15:05)

Now when I go ahead and then look at the experimental data as you understand like if

you  have  a  heteronuclear  diatomic  system,  or  if  you  have  a  homonuclear  diatomic

system, these data the characteristic data of these gases are available in the literature.

People have used many different methods to estimate for example, the D naught value

and also, the vibrational and rotational temperatures for different systems..

Now once this information is available to you, then what you can do is you can go ahead

and estimate the contributions like, a F rot or F vib or u vib or u rot, and you can try and

start understanding that whether a particular degree of freedom is going to contribute to

the overall value of a given thermodynamic property at a given temperature .

So, at this stage I am not going to do the calculations, rather I would like to take up this

very simple case, where one is wondering about the specific heat of a diatomic ideal gas.

Now in the experimental measurements if you employ something like a hydrogen gas or

some HCL gas, this is a typical observation that one makes..
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So, we find that Cv is a quantity that is being measured as a function of temperature ok.

So, initially at T going to 0 Cv is nearly 0. If you are at a very low temperature, say like

10 to 50 kelvin. Then Cv remains constant over this range of temperature, and we find

that this value is 3 by 2 R. And then on further increase in temperature as you must

realize that we have logarithmic scale on the x axis . So, if I look at another range of

temperature  say  betweens  around  the  room temperature  300  kelvin,  once  again  the

specific heat or constant volume of the diatomic gas, that turn outs it turns out to be one

unit more.

So, here it is 3 by 2 R, and here it is 5 by 2 R. So, that is the Cv has increased by an

amount R as I went from this low temperature region to this high temperature region. It

remains constant for over certain temperatures and then finally, when I am above a few

thousands of kelvin then I can see that it starts rising again. And if you can go to even

higher temperatures, then you will see that another flat region is coming into the picture.

Now this kind of observation is actually rather baffling. I mean, can you explain this

qualitatively the answer is no. So, let us try and see how we can use our understanding of

the statistical thermodynamics or the molecular thermodynamics of a diatomic ideal gas

that can help us in explaining the experimental data as shown .

So, as I understand that at temperature T going to 0 the at very low temperature near 0

temperature the thermal energy for all practical purposes, which is given in terms of the



kb that is a Boltzmann constant into the temperature in absolute unit, that is practically 0.

So, what is the underlying microscopic state of the gas under such condition..

So, this is what we have seen as the underlying microscopic structure of the molecule at

0  Kelvin.  So,  what  we understand  that  here  all  the  molecules  constituting  the  ideal

atomic gas will be populating a state like this. So, what is this state this is a state that

corresponds to the ground electronic state of the molecule and it is the lowest energy

possible state of the system. Therefore, it goes so; it is residing at v equal to 0. That is the

lowest vibrational energy state, and j equal to 0 that is the lowest rotational state.

Now, if I think of a little higher temperature like 10 to 50 Kelvin; that is, where I am

here, this means that now the accessible thermal energy to the system is KBT. So, T has

increased. So, this thermal energy is small, but and of the order of 10 to the power minus

4  electron  volt.  And  with  this  thermal  energy, I  ask  this  question  now will  it  with

availability of this very small amount of thermal energy, is it possible that I will have

some different microscopic states now accessible to the system? I would see that still the

most probable microscopic states would correspond to the molecules being in the ground

electronic state with v equal to 0 and j equal to 0.

Now, why is  that  so? That  is  because here I  find that it  is  essentially  behaving as a

monatomic ideal gas, in a monatomic ideal gas, if you see that there are 3 parts in the

contributions, here that is the underlying structure and the translational motion. So, in

order to understand this the first thing that you realize is if I look at look back at what

typically are the differences in the energy levels..
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We find that the rotational energy levels are of the order of about 10 to the power of

minus 3 electron volt  whereas,  the vibrational  energy levels are of the order of 0.05

electron volt, and this is about thousand electron volt between the ground and the first

excited  electronic  state.  And the basic  idea is,  you can transfer  population  from one

energy state to the other if the difference in the 2 energy levels . The difference in values

of the 2 energy levels is roughly approximately equal to KT.

Therefore if you are supplying thermal energy at a temperature T, the amount of energy

being transferred is KT. Therefore, I understand that the rotational states will be excited

if  you supply the system with an amount  of energy to  the tune of one thousands of

electron volt. Now if I go back, I see that I have now a thermal energy in this temperature

range a thermal energy which is less than that. And therefore, even if I am heating up the

system and supplying thermal energy to the system the supplied energy is not sufficient

to excite the molecule from it is neither does it excite it from the ground electronic state

to the first excited electronic state.

This is ins sufficient to excite it from the vibrational ground state to say v equal to 1 for

the ground electronic state . It is not even possible to excite the population j from j equal

to 0 to j  equal to 1 corresponding to the ground electronic state.  And therefore,  as I

understand the underlying structure of the molecule is not important in this temperature

range.  So, all I have is structureless molecule having a mass capital.  That is moving



about in the 3-dimensional box. So, how many degrees of freedom do I have here. I have

3 degrees of freedom corresponding to translation in the x y and z axis.

Now, equipartition theorem tells me that each degree of freedom contributes an amount

of half R ok, per mole . So, in this case what happens is I see that I have 3 translational

degrees of freedom, each contributing half R and therefore, in this region I have the Cv

constant at 3 by 2 R . Therefore, when I am in this temperature range, whatever thermal

energy  I  supplied  to  the  system,  it  is  being  used  up  by  the  molecules  to  execute

translational  motion  in  the  x  y  z  direction.  And  no  and  the  and  the  system in  this

temperature range is frozen in it is ground electronic state, ground vibrational state, and

ground rotational  state corresponding to the ground electronic state.  So, it  essentially

behaves as if it is like whatever would happen to a monatomic ideal gas .

In the next stage now consider what happens to the next level of temperature.
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So, in the next level of temperature, let us consider this range where the Cv changes

gradually from this value of 3 by 2 R to 5 by 2 R ok. Now in this case, what I find is at

around 300 kelvin, the thermal energy is to the tune of about 3 into 10 to the power

minus 2 electron volt. And now I can very easily say that the available amount of energy

is sufficient, to excite the population from say j equal to 0 to j equal to 1 or j equal to 1 to

j equal to 2 and so on and so forth.



Therefore, I would say that in this temperature range, the available thermal energy is

sufficient for the excitation of the rotational states so that now I will have microscopic

states of the molecules present whereby all of them are present in the ground electronic

state. All of these molecules will have v equal to 0, but they are going to have a range of

j values other than 0 in addition to 0 ok. Now if you think about the molecule populating

higher  energy  rotational  energy  levels.  It  is  basically  saying  that  in  addition  to  this

molecule executing translational motion in the 3-dimensional system, if you look at what

is happening internally this molecule has started rotating.

Now, this would add not only 3 translational degrees of freedom to the system, but it

would the system will now have 2 additional degrees of freedom, coming from rotation

around 2 axis of rotation. And therefore, there are now a total of 5 degrees of freedom.

Each contributing an amount of half R to per mole of system, and therefore, I understand

that with the excitation of the rotational energy states Cv would go and stabilize here at 5

by 2 R. So obviously, what happens when I have g1 over, and looked at from beyond this

region at higher temperature?
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Say at around 3,000 kelvin the thermal energy is about 0.2 electron volt and this is that

now the molecules will be present in a range of microscopic states the most probable

micro scopic states will be associated with the ground electronic state no doubt, but now



you  will  have  excitation  of  both  the  vibrational  energy  states  and  excitation  of  the

rotational energy states..

And  therefore,  you  see  that  at  present  ,  the  most  probable  microscopic  states  will

correspond to the ground electronic state as shown here. But all these levels here v equal

to 0 v equal to 1 v equal to 2 they will gradually get populated as temperature increases.

And similarly, each of their rotational sub states they are also going to get populated .

Therefore, now I have 3 translational degrees of freedom 2 rotational degrees of freedom

and 2 vibrational degrees of freedom adding up to 7 degrees of freedom so that as the

overall heat capacity increases , it tends to the value of 7 by 2 R.

So, in this lecture what we have learnt is, it is not impossible to summarize the observed

experimental  behavior  in  terms  of  the  a  single  particle  partition  functions,  and  the

population of the underlying microscopic energy states of the molecules..
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And the crucial point to note here is as follows. So, what we have here is it is indeed

possible  by  using  the  concepts  developed  through  molecular  thermodynamics  to

understand the observed experimental behavior, and not only that we realize that what

happens at room temperature..

At room temperature that is, in this range the rotational degrees of freedom are excited,

because the thermal energy is comparable to the energy difference between subsequent



energy levels of the rotational energy states. But the available energy is still not enough

to start transferring population from v equal to 0 to v equal to 1 or v equal to 1 to v equal

to 2. And this basically means that the vibrational degrees of freedom are still frozen.

So, this has given us some idea as to why people spend so much effort in understanding

and  developing  the  microscopic  nature  of  a  system  with  respect  to  the  underlying

microscopic structure. In the next lecture, we will have a closer look at a homonuclear

diatomic atom and trying to explain seemingly disturbing mismatch between theoretical

predictions and experimental data.

Thank you.


