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Welcome we are discussing the statistical  thermodynamics of an ideal gas, where we

have derived several very important results regarding how to start with the Hamiltonian

of the system and then try to understand how to use the different exactly solvable results

of Schrodinger equation under certain approximations for the ideal gas and then derive

the thermodynamic properties from it.

(Refer Slide Time: 00:52)

The first thing that we have learnt is the information that is present for an ideal gas

maintained at  a thermodynamic  state  of constant  temperature volume and number of

particles.  We can visualize  at  the microscopic  level  this  gas has  being comprised of

atoms or heteronuclear diatomic molecule or homonuclear diatomic molecule.
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And we  have  already  seen  how to  talk  about  putting  the  information  regarding  the

microstates of the system in terms of the canonical partition function. And the canonical

partition function is defined like this for the total N number of particles which are present

in the system, which are identical to which each other and which are not interacting with

each other.

Under this given condition then we have also seen that for a monoatomic ideal gas we

have this following expression for the single particle canonical partition function that is

small q. Now, since I already said that it is for the single particle, so N equal to 1 that is a

particular case and small q depends both on temperature and the volume at which the

entire system is present. In the case of monatomic ideal gas we have been able to show

that we have the small q for an ideal gas it derives contributions from 3 distinct factors,

one is the translational partition function for the single particle, the electronic partition

function for this single particle as well as the nuclear partition function for this single

particle. So, this first term corresponds to the movement of the molecule as a whole or

the atom as a whole in the confining volume and these two terms correspond to the

underlying microscopic structure as given by the solution of the Schrodinger equation at

0 Kelvin temperature.

Now, if we compare what has happened in the case of the diatomic ideal gas where each

particle in the gas is a molecule comprised of two atoms in that case what we find is that



we will have the same terms as we have seen in the case of monatomic ideal gas such as

q trans, q electronic and q nuclear, but here we have two additional terms coming in

because of the presence of an underlying molecular structure in the form of a chemical

bond between the 2 nuclei  of the system. Therefore we could highlight how the this

difference in underlying chemical  structure of the two systems will  affect the overall

small q that is a single particle canonical partition function, and hence affect the capital

Q that is the total canonical partition function.

Now, if we go ahead and remember what happens as a consequence of this we know that

we are able to calculate the small q’s under certain approximations and its possible to

show that irrespective of whether you have atoms or molecules constituting the gas, the

translational partition function can be written in terms of the volume V in which the gas

is present and lambda cube.

Now, we have  introduced  the  lambda  cube as  the  debroglie  thermal  debroglie  wave

function  which  tells  us  something  at  finite  temperature  and  it  gives  us  the  finite

temperature analog of the debroglie wavelength associated with each particle. We will

come  back  to  this  concept  later  on,  but  as  we  see  here  that  the  debroglie  thermal

debroglie wavelength it depends on two key quantities, the mass of the particle the signal

particle and the temperature at which the system is present. So, on the whole q trans is a

function of volume and temperature at the level of thermodynamic properties and for

each given system this  small  m decides  the what  is  the mass of the overall  moving

particle that we are considering.

Therefore,  in  the case of monatomic  ideal  gas this  small  m is  a  mass  of  each atom

present in the system and in the case of the diatomic ideal gas this corresponds to the

mass of each molecule which evidently is the total mass or the mass associated with the

center of mass of the molecule. We have discussed all these in the last lectures.

Now, the next important factor which appears in both the cases are the q electronic and

the q electronic is given by an expression like this which we have discussed in detail.

And  we  have  seen  that  if  you  know the  electronic  absorption  spectrum or  if  using

quantum mechanics you are able to find out the energy eigenstates corresponding to the

electronic  Schrodinger  equation  then  you  have  information  of  quantities  such  as

degeneracy of the ground electronic state, degeneracy of the first excited electronic state



and the energy difference between the first ground and the first excited electronic state

and also beta is nothing but inverse of k T. As a result using experimental data or by

using results from theoretical calculations it is possible to determine what q electronic is,

irrespective of whether you have monatomic or a diatomic ideal gas, the prescription is

the same.

Now, the next thing that we need to worry about that is common in both the I mean

diatomic as well as a monatomic case is the q nuclear, and we have seen in our earlier

lecture  that  q  nuclear  is  essentially  approximated  in  terms  of  the  degeneracy  of  the

ground nuclear energy level. So, once we know this then the task of finding the small q

that is a single partition function for the atoms constituting the monatomic ideal gas is

complete. But as I have already noted here that we need to worry about these two parts q

rot and q vib if you are talking about the diatomic ideal gas, and by definition under the

rigid rotor simple harmonic approximation we have been able to show that q vib, if I

assume the  vibrations  of  the  chemical  bond connecting  the  2 nuclei  in  my diatomic

molecule is associated with an intrinsic angular frequency omega then we can define a

temperature which is called theta vib and theta vib is given by h cross omega divided by

k B.

(Refer Slide Time: 08:25)

So, as you see that omega this is an intrinsic frequency of the bond under consideration.

So,  this  is  going to  be an typical  characteristic  property of  the system and this  is  a



quantity that I am representing in red; h cross in k B are universal constants therefore,

theta vib that vibrational temperature is also a characteristic property of the system that

you are looking at of the molecule or atom of the molecule that you looking at. And

therefore, q vib it depends on temperature because of the presence of temperature term

both in the numerator and in the denominator and theta vib is a characteristic property of

the system that you are talking about.

The additional property that we paid a lot of attention to is the rotational single particle

partition function. And here theta rot is given by h cross B bar by k B, where B bar is a

rotational constant that can be found out from the rotational spectrum of the molecule

under consideration. So, this is an once again a characteristic property of the system and

there is this term sigma that we have used we have discussed extensively in the last class

as a characteristic property which we call a symmetry number and sigma is equal to 1 for

heteronuclear diatomic cases and sigma equal to 2 for homonuclear diatomic molecules.

So,  now, with  all  these  in  picture  we  can  obviously,  for  a  given  system  if  I  have

information regarding the characteristic properties like theta rot theta vib. And then small

m and omega e 1 omega e 2 delta epsilon 12 and omega n 1 depending on whether I have

an monatomic case or a diatomic case I am in a position to calculate the small q’s and

correspondingly I am in a position to calculate capital Q. And this is important because

all  the  microscopic  information  is  now,  contained  within  the  N  particle  canonical

partition function capital Q.

So, what do we do next? We have seen within the formulation of statistical mechanics

that q is connected to the thermodynamic properties especially in the canonical ensemble

the natural law rhythm of q is related to the Helmholtz free energy. So, let us next see or

revise what we have learnt regarding this connection.
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So,  we  have  said  that  the  Helmholtz  free  energy  is  nothing,  but  negative  of  k  T

multiplied by natural logarithm of ln natural logarithm of q that is ln Q, T V N. And

using this definition we can find out the internal energy, the pressure, the entropy and the

chemical potential and we have discussed each of these criteria, each of these equations

in our earlier lectures.

(Refer Slide Time: 12:01)

And we have also seen that if it is our goal to understand what is going to be the effect of

structure on thermodynamics then we found that especially in the case of a monatomic



ideal gas that writing small q and partitioning it into two factors corresponding to the

contribution of the center of mass and internal structure gives you these two different

contributions which further can be factorized into q electronic and q nuclear for the q

internal part.

So, what was the consequence of this kind of partitioning? The result of this kind of

partitioning was that in F which is related to capital Q which in turn is related to small q

can now, be written as contribution of two terms, this is the first term and this is the

second  term.  Now, this  first  term  actually  is  involving  the  partition  single  particle

partition function corresponding to the centre of mass and this part is corresponding to

the single partition function corresponding to the internal structure of the molecule. So,

we can very easily identify that if I write out the contributions to the internal structure

therefore, F corresponding to these 3 terms here will have 3 different contributions, one

corresponding  to  q  com,  one  corresponding  to  q  electro  electronic  and  the  other

corresponding to q nuclear.

Now, in each case I associate one free energy function corresponding to this and in that

case what I will be able to do is I should be able to write down a an equation like this so

obviously, what I am doing here is I am relating this F the contribution of the center of

mass to the overall Helmholtz free energy is nothing, but this factor. Now, there is some

contribution of the electronic structure to the overall Helmholtz free energy and that is

defined like this. And finally, it may so happen that there will be some contribution to the

overall Helmholtz free energy from the underlying nucleus structure which is related to

this term.
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Now, once this happens we understand that this kind of property is not unique to the

Helmholtz free energy itself, therefore I can say that using the same type of argument I

should be able to partition the total internal energy of the system in terms of 3 different

contributions  in  a  monatomic  ideal  gas.  While  the  first  one  is  the  internal  energy

corresponding  to  the  translational  motion  of  each  atom in  the  system multiplied  by

capital N the number of atoms. This is the total electronic energy of the N atoms present

in the system and this corresponds to the corresponding contribution coming from the

nuclear energy states and since U is related to the specific heat and therefore, I should be

able  to  repeat  exactly  the same kind of  partitioning also in studying the property of

specific  heat  and we have  already  seen  that  there  are  3  different  such contributions

possible.

And extending this discussion on the effect of structure on thermodynamics we now,

consider the diatomic ideal gases and there once again I will remind you that the overall

small q, now involves two additional terms q rot and q vib.
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And these are the two additional terms which will appear in the as some additive terms in

the thermodynamic properties like Helmholtz free energy.

So, that is exactly what we see here therefore, what I find is now, the Helmholtz free

energy can be written as a sum of one term corresponding to the center translational

motion of the center of mass which is this term. That is a term corresponding to the

rotational motion of the diatomic molecule which is related to this term. There is one

contribution from the vibrational motion which actually corresponds to this term. Now, I

have F electronic arising from this term and finally, F nuclear as before arising from this

term. So, once again the consequence of having these two additional contributions in the

diatomic  case  is  that,  now  there  will  be  two  additional  contributions  to  the  overall

internal energy and here they are U vib and U electronic.
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And similarly we should be able to see that the C v the overall specific heat of the system

are also going to have two additional contributions in terms of C v rot and C v vib.

(Refer Slide Time: 17:39)

In the next part of my lecture today what I am going to do is I am going to try and

reproduce some of the well known results in the case of an ideal gas. I will show you the

expressions for the monatomic ideal gas case and I would urge you to go back and try it

out yourself for the diatomic case. So, the first thing that we would like to talk about is

the ideal gas equation.



Now, in the ideal gas equation which is a derived from experimental data it is said that if

you measure the pressure of a gas at a given volume and at a given temperature for a

certain amount of the gas the number of particles is fixed, then the pressure satisfies the

pressure resultant pressure of the gas satisfies a functional relationship and that is given

by pV is equal to N k T.

Now, once again I have already discussed the derivation of this to you before and I will

do so again by looking at the kind of results that we have got for the monatomic ideal gas

case and try to see how we can do a little bit of algebra to arrive at this relationship. In

order to do this the first thing to realize would be that the pressure is given in terms of k

B T del ln Q del V T N. Now, if I go back and write down what capital Q is for an ideal

gas that is small q to the power of N divided by N factorial therefore, we could show that

ln Q is equal to capital N q small q e by N under sterling’s approximation. If I can do this

then if I want to find out what is the derivative of this quantity with respect to volume I

have to look at the right hand side and try to understand where does the volume appear.

As you see the only term where the volume would appear is small q. So, I would say that

ln Q is something like capital N ln small q plus other terms which are independent of

volume. Please remember that we are going to take this derivative as del ln Q del V T N.

So, we are going to dump here all the terms that depend on N that depends on T, but does

not depend on the volume. Now, if I do this then what is del ln Q del V T N? Once I have

fixed T and N this whatever terms appear here they are independent of V and they do not

affect what I the way I take a derivative here and there because for my mathematical

purpose whatever terms are there these are constants therefore, I can write this as capital

N del ln small q del V T N.

Now, for a monatomic ideal gas we have been able to show that small q is equal to V by

lambda cube into q electronic and q nuclear. Now, where does the dependence on V

appear? The dependence on V appears through this explicit appearance of capital V, as a

result I would say that if I assume that q electronic and q nuclear these are constant terms

with respect to volumes in that case I can write down ln q that is equal to ln V plus other

terms that I need not be bothered about and therefore, what is del ln q? Del V del ln q del

V keeping T and N constant. Now, turns out to be 1 by V. Therefore, I can go back and

look  the  definition  of  pressure,  pressure  is  equal  to  k  B T del  ln  Q del  V keeping



temperature and number of particles constant that is equal to Nk B T into del ln small q

by del V TN and I find that this is nothing, but Nk B T divided by V.

So,  we  have  been  able  to  show  that  if  I  use  this  definition  of  p  in  that  case  it  is

straightforward  to  find  that  the  major  contribution  to  pressure  comes  from  the

translational part because in q trans you had a direct dependence on V, and that is what is

giving  you  this  kind  of  a  term  that  is  nothing,  but  the  ideal  gas  equation.  Please

remember while deriving this we have assumed that these terms are independent of the

volume this is more or less a reasonable approximation for the kind of temperatures,

normal temperatures that we talk about. Now, let us next go ahead and try to see if from

the formalism that we have derived over here if we can show the equipartition theorem,

whether equipartition theorem is  important  the importance of equal partition theorem

from the theoretical formalism that we have proposed here. So, the equipartition theorem

tells you that the internal energy of the system is 3 by 2 Nk T at a given temperature T or

in other words in as proposed by Joules law the internal  energy of an ideal gas is a

function of temperature and temperature only.

Now, let us try and see if we can at all reproduce this property from our formulation.

(Refer Slide Time: 24:40)

So, for this purpose once again. I am going to use the result that ln capital Q is equal to

capital N ln small qe by N. And what is U? U is given by this expression that is k B T

square into del ln q del T V N. So, I need to understand what is the derivative of ln Q



with respect to temperature keeping volume and number of particles constant and once I

know this derivative I will multiply it with k B T square and the result will give me the

internal energy.

Now, when I look back at this particular expression that I have written down for ln Q, I

understand that shear I need to find out the temperature dependent part that and the rest

of the part should remain constant at a given N and V. So, here I can write down that ln Q

is dependent on ln small q plus some other terms which are constant at constant volume

and number of particles. Now, let us have a look at what small q is therefore, small q we

know that this is equal to q trans into q electronic into q nuclear therefore, small ln q that

will have additive contributions from these 3 terms because it is the log quantity that I

am looking at q nuclear.

Now, in this expression can I find out where the temperature dependent terms come? I

already know that q nuclear is nothing, but the degeneracy of the ground nuclear energy

state which is a constant for a given system. Therefore, if I keep the volume and the

number of particles constant in that case this term is not going to have any dependence

on temperature therefore, if I am looking at the temperature dependence of this quantity I

should be bothered about temperature dependence of this quantity and this quantity and I

can safely neglect this part. Now, if I looked at what the expression for q trans is that is V

by lambda cube right and this I can write that this is sum constant if I use the expression

for lambda I know that lambda squared is equal to h square divided by 2 pi m k T.

So, what is lambda? Lambda goes as T to the power of minus half therefore, lambda

cubed should go as T to the power of minus 3 by 2. As a result I would say under the

condition  of  constant  temperature  and  pressure  a  constant  volume  and  number  of

particles I can have this as written as something into T to the power of 3 by 2. Therefore,

ln q trans that will be written as 3 by 2 ln T plus certain other terms which are constant at

constant  volume and number of particles and therefore,  del ln q trans del T keeping

volume and number of particles constant that is going to give you 3 by 2 T.

In the next part of my lecture I am going to use the kind of results to express what will be

the contribution of the overall translational motion to the internal energy of the system.

Thank you.


