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Welcome back, we shall continue our discussion, on how we can use the framework of

statistical thermodynamics, to understand the how we can correlate the contribution of

underlying translational motion and internal structure in the case of an ideal gas, and we

have already seen here that how we can write down the ideal gas equation starting from

the hamiltonian of the system, and here the basic exercise that we are performing is how

to calculate the canonical partition function for this N particle system, and from there we

are using the prescription of connecting capital Q that is a canonical partition function to

the overall Helmholtz free energy of the system, when the ideal gas is being maintained

at a constant temperature volume and a number of particles.

(Refer Slide Time: 01:18)

The next property that we are going to look at is the internal energy, which from the

equipartition theorem is known to be given by this expression, and that is nothing but the

joules  law,  which  says  that  for  an  ideal  gas  the  internal  energy  is  a  function  of

temperature and temperature only, and for this purpose we have already started to look at

how to obtain the internal energy, starting from the canonical partition function q.
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And here we have seen that l and q is related to small q, and at constant volume and

number of particles the dependence of l n q on temperature arises entirely because of l n

small q, and then we started looking at the different contributions of different degrees of

freedom to overall small q, q trans, q electronic and q nuclear.

Therefore  under  the  condition  of  constant  volume  and  number  of  particles,  we

understand that any dependence on temperature of this l n small q, will come either from

this or from this term, and then we set out by writing the explicit expression for q trans,

and found out that del l  n q trans del T under the condition of constant volume and

number of particles is 3 by 2T, now we will now go ahead and try and find out what is

the corresponding contribution to the overall internal energy, now U trans is given by k B

T square, into del l n q trans by del t, under in the condition of constant volume and

number of particles and therefore, what I will write is this is nothing but 3 by 2 T into k

B T squared and of course, I have a capital N from in front. So, that turns out to be 3 n by

2 k B t.
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So now what I have here is this  interesting observation that in my overall  u,  I  have

contribution from U trans plus U electronic and also if possible U nuclear. So, what is U

trans? U trans is given by k B T square del l n capital q, by del T under constant volume

and number of particles right, and I show that this is nothing but N k B T square into del

l  n small  q del T V N, and I have been able to show using the explicit  temperature

dependence of this small q term, here because of translation. So, this is trans this is also q

trans, and what I find is that this is 3 by 2 in k B t. So, this is a result that we get from the

equipartition theorem, but we also have some term other terms appearing here. 

So, let us look at individually what this terms are and we find that U electronic, that is

now being given by k B T square del l n capital Q or small q electronic, del T taking this

derivative of constant volume and number of particles with a capital N in front, and in

order to understand this what I should be doing is I should be writing down what small q

electronic is, that we already know is w E 1 plus w E 2 into E to the power of minus beta

delta epsilon 1 2, therefore, if I take l n of this term, I will be taking l n of this entire

summation, then I am going to look at the temperature dependence of the logarithm of q

electronic now why should this term be dependent on q electronic and that is because;

obviously, I have this factor beta here, where did I get this number from? This number

we have obtained from the solution of the Schrodinger equation, and the solution has

been obtained for an isolated system for 0 kelvin temperature.



So, that part is not temperature dependent, but explicitly the appearance of the term beta,

which is 1 by k T that governs the temperature dependent property of q electronic and

therefore,  I can say that del l  n q electronic del T if  I take this derivative under the

condition of constant volume and number of particles that is equal to 1 by q electronic

into del q electronic del t, under constant volume and number of particles right, but as

you see q electronic is a function of beta. So, for the sake of doing the algebra, it is found

that it  is easy to write it  as del q electronic del beta under the condition of constant

volume and number of particles into d beta d t, right now what is the beta d T we already

know that beta is 1 by k t. So, I must be having d beta d T as minus 1 by k B T square

right, and now what is del q electronic del beta that can be easily figured out from this

expression

So, if I put this back what I have is, 1 by q electronic multiplied by the del, del beta of

this term the first term is independent of beta. So, that drops out and I have contribution

from the second term, and the contribution is minus omega E 2 into delta E 1 2 into

exponential minus beta delta epsilon 1 2, right and then I have a multiplication again

coming from this term and that is minus 1 by k B T square. So, what does it give me, this

gives me that U electronic that is equal to N k B T square, into del l n q electronic del T

keeping volume and number of particles constant, that would be given by 1 by n omega

E 2,  then delta epsilon 1 2 e to the power of minus beta delta  epsilon one 2 into q

electronic right.

So, we have been able to show what U transes and what U electronic is, now think about

what is q nuclear.
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So, once again q nuclear in this case is a constant term therefore,  l n q nuclear is a

logarithm of  this  constant  term therefore,  del  l  n  q  nuclear  by del  T under  constant

volume of number of particles that is going to be equal to 0 therefore, I can say that U

nuclear here by assuming as a 0 of energy the ground nuclear energy state, I understand

that there will be no contribution to the overall internal energy as measured in the by

setting the ground nuclear energy state to be equal to 0. So, this would be given by

capital N k B T square del l n q nuclear del T V N and this is 0. So, what is the net

internal energy of the system then, the net internal energy of the system now is been

given by an expression like this.

Now, this is something very, very interesting because as we see that in this expression, I

have  first  this  green  term  that  appears  corresponding  to  q  trans.  So,  that  is  the

contribution of the translational motion of the particles in the system of the capital N

atoms in the system, and there is another term over here that is proportional to capital n.

So,  for  each  particle  I  have  this  term appearing  in  over  here,  and  this  term is  the

correction  to  this  equipartition  value  that  appears  because  of  the  presence  of  a

microscopic structure of the constituent atoms of the ideal gas. So, what we find here is

we not only reproduce the equipartition theorem, but also, we find out the correction that

will be introduced as a result of the existence of the underlying microscopic structure of

the atoms.
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The next thing that I will quickly go through is the entropy of an ideal gas, now the

entropy of an ideal gas can now be determined very easily by looking by knowing the

fact that I know U in terms of l n q from l n q I know F from l n q. So, if I take the

difference and divide it by t, I should be getting the entropy S by definition when you do

this little bit of algebra this is the expression that you get. So, what I have done is I have

used the expression for U that I have derived over here I have use expression of f, and

then taken the difference and this is what I write and I am going to collect some of the

numbers separately and give you the final expression as this.

So, let us have a look at what these different terms are, I have taken this 3 by 2 n k B

inside. And so, these 2 terms combine together to give me the first storm that I see here,

and these 2 terms that appear here, they combined together to give me what I call is the S

electronic or the electronic contribution to the overall entropy of the system, now why do

I say. So, if we look at what S electronic is, we see that all the terms here which appeared

here which have been shown in the purple color, these are dependent on the electronic

structure of the underlying atom, as a result we would say that the contribution of the

electronic structure is coming through these terms, and this is defined as S electronic.

Now, what is it that I have here; obviously, all the terms that I see here are coming from

the  overall  translational  motion  of  the  atom  as  a  whole  within  the  volume  V at  a

temperature  t,  and that  is  the  contribution  of  this  translational  motion  to  the  overall



entropy of the system for n such atoms, and this equation is known as the sackur tetrode

equation, and we will look have a look at the specific use of the sackur tetrode equation

especially to understand what is known as Gibbs paradox, but that we will do later, at

this point let me also try to reproduce another property of the ideal gas which we have

repeatedly seen in our earlier exposure to the ideal gases, that is a chemical potential of

an ideal gas.
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So, your preliminary studies on thermodynamics  must have included this  expression,

where you see that mu the chemical potential is a function of temperature and pressure in

general, and in the case of an ideal gas this can be written as mu naught T that is the

chemical potential of the gas at a temperature t, under standard conditions of standard

pressure one bar plus an incremental part which is k B T l n p. So, if the gas is present at

a temperature T and volume and pressure p, in that case I should be able to separate out

the entire chemical potential into 2 terms, one is what that is dependent on temperature

only and it is a fixed value under standard condition of 1 bar pressure, and there is an

additional  term which  depends  on  the  temperature  and the  pressure  condition  under

which the gas is  present,  and the question that  I  asked over here is  as follows, is  it

possible for me to start from the expression of capital Q and small q that I have used

here, and explain why an ideal gas should be having a chemical potential that the whose

expression separates out into two terms like this.



So, what is mu naught T in order to answer that question, what we are going to do is

once again we are going to use the definition of mu. So, what is the definition of mu?

The definition of mu is this is related to a derivative of l n q with respect to capital N

keeping  temperature  and  volume  constant  in  the  canonical  ensemble,  and  then  you

multiply it with minus k t, and this is what you get as a chemical potential of a single

component ideal gas which is maintained at a constant temperature and volume, now if I

want to evaluate this for the ideal gas.
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I once again I write down that capital Q is equal to small q to the power of n divided by n

factorial. So, what is l n q that is the quantity that I require.

So, this can be written as capital L n q minus N l n N plus N, now under the condition of

constant temperature and volume, I am going to find out what del l n q del N is. So, I am

looking for this particular derivative, and this would be given by the following condition,

that I can write down that this is given by l n q plus N del l n q del N TV minus l n N

minus N into 1 by N plus 1. So, what I have done is in the first term I kept N constant I

took a derivative with respect 2 n keeping this constant. So, this is what I get, then I kept

n constant took a derivative of this with respect to capital N then I took the derivative of

these terms and this is what I get.

So, the result is del L n q del N TV, that is equal to l n these terms cancel out. And so,

you all you have is this is equal to small q by N, if that is. So, then, what is mu? Mu is



given by minus k B t, del l n q del N T V and therefore, I can use this result and say that

mu is equal to minus k B T l n small q by N right. So, it is possible for me to write down

that expression that mu is equal to minus k t, then natural logarithm of q by n now please

remember that in this expression, I have assumed that this is 0; obviously, small q it is

written for one particle and it is independent of capital n. So, that is a reason why I have

been able to write it as 0, the next thing that I will do here is as follows I am going to

write down once again the explicit expression for small q.
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So, small q is equal to something like q trans far monatomic gas, q trans, q electronic and

q nuclear, now q nuclear is a constant term therefore, for the purpose of for our purpose

we can neglect that. So, I am going to neglect it as a constant term therefore, I should be

able to write mu as minus k B T l n small q by capital N and the resulting expression is

small q is 2 pi m k B T by h square whole to the power of 3 by 2 into V E by capital n,

right and then I have minus k B T l n q electronic by capital N this term. So, this is a

translational part, this is the this is the electronic part, may be for the sake of clarity I can

retain the q nuclear there no harm done.

Now, please let us try and have a look at what are the terms that we have here, I know

that V by N this must be having certain relationship as far as the ideal gas is concerned, I

know that p V is equal to capital N k B T therefore, under the condition where here I can

write that V divided by N must be equal to k B T by p right. So, what I do is instead of V



by n, I will write this as k B T by p, now what I do is I take out this pressure dependent

term. So now, mu is written as minus k B T l n 2 pi m k T by h square to the power of 3

by 2 into k B T into e, and then sorry this E will not be there because I am writing small

q, and then minus k B T l n q electronic into q nuclear by n, then plus k B T l n p,

because I had p here in the denominator there was a negative sign here so, that gives me

plus k B T l n p.

Now let us have a look at the 2 types of terms that we have obtained here, I have some

term  over  here  plus  I  have  some  other  term  which  has  appeared  as  an  additional

correction to it. So, this term is the k B T l n p that we expect to have some moderate

moderation on the value of mu over and above what we see here, now whatever appears

within this square box that is dependent on temperature, and as you see that this I could

have written as k B T by p naught, where p naught is equal to one bar and in that case

this is nothing but mu naught T as defined in the literature, and therefore, what we have

been able to do is using the relationship between volume and pressure and the N and T

we have been able to show that well my mu is going to be comprised of 2 terms, the first

term is essentially dependent on temperature and the intrinsic properties of the system

like m q electronic and q nuclear, and what I am left with is this term k B T l n p, which

basically tells me what mu naught T is this is nothing but whatever appears here and we

obtain this k B T l n p as an additional term. So, what we have learned from here is as

follows. 

So, using the formalism of statistical thermodynamics or molecule a thermodynamics,

we find that each and every thermodynamic function has a correction to it, that appears

from the underlying microscopic structure and this correction occurs over and above a

term that  is  coming from the contribution,  of a structuralist  particle  that  is  the basic

constituent of my system.
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So, is this correction important. So, in order to understand that let us take this example,

where  we under  try  to  understand the  importance  of  the  structural  correction  to  the

internal energy in the case of a monatomic ideal gas, where we know that U trans is

nothing but 3 by 2 n k T and U electronic is dependent on the underlying microscopic

structure of the atom. Now let us consider this example where we have helium atoms.

So, for helium gas the constituent particle is a helium atom for which spectroscopy is tell

you that it has a singly degenerate ground electronic state, and a triply degenerate first

excited  electronic  state,  and the  difference  between the  ground and  the  first  excited

electronic states is given by around 20 electron volt.

Now, then what we can do is we can do a little bit of calculations, and this calculations

are as follows we look at 3 different temperatures 10 kelvin 50 kelvin and 1000 kelvin,

and  then  we  know  what  is  the  amount  of  thermal  energy  k  T  at  each  of  these

temperatures, and we find that delta E delta epsilon 1 2 by k T this quantity is actually a

large number at 10 kelvin, even it still remains large even at 50 kelvin, but it becomes a

finite number at thousand kelvin. So, what is the consequence of this, the consequence of

this  is  that  this  exponential  term  as  written  out  here,  these  are  virtually  0  at  the

temperatures low temperatures of 10 to 50 kelvin and this is about 10 to the power of

minus 2 at 1000 Kelvin.



So, what is  the consequence of having this  small  yet finite  value of this  term x this

exponential term to the contributions that we see here. So, if I find out you trans then I

find that at 10 kelvin you transes about 10 to the power minus 3 electron, volt and then if

I go to 50 kelvin it remains in the same range it is just that this pre factor changes, but

essentially  just  because  these  exponential  terms  are  essentially  0  therefore,  the

contribution to U electronic by n, this is going to be 0, now when I come to 1000 kelvin

what happens is U trans is now about 13 electron volt, but as you see that there is some

small,  but finite correction coming from the underlying electronic structure,  which is

about point 7 electron volt. 

So, what is it that we have learnt from these numbers these numbers tell me that well at

low  temperatures  the  microscopic  states,  that  are  being  accessed  by  the  system  at

essentially the ground electronic state of the atom, and the ground nuclear energy state of

the atom and then whatever translational motion it executes at those temperatures, that is

what uses up the corresponds to the total internal energy of the system in the case of a

monatomic ideal gas.

Now, as you go on increasing the temperature of the system, what happens is now at

much higher  temperature  the population  of the first  excited  electronic  state  becomes

appreciable, now what is U, U is the average energy of the system.
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Now, average energy is nothing but given by the energy of the r th state multiplied by the

probability  of  the  r  th  state,  and  we  know  that  this  probability  is  dependent  on

temperature, at low temperature this probability is very, very small and therefore, E bar is

approximately. So, if I can write this as this is E electronic energy ground state into,

probability of observing the system in the ground state plus E first excited state into

probability of observing it in the first excited state at low temperature, this probability is

very, very small as a result this is dominated by the ground state energy, but at very high

temperature what happens is the probability of occupation of the first excited electronic

state increases,  as a result  then in addition to the ground state energy we have some

energy values coming up from the first excited state, multiplied by some number which

tells me the fraction of population present in the first excited state.

So, this will be the fraction of population in the ground state multiplied by the ground

state energy plus, a fraction of the population in the excited state corresponding to the

and multiplied by the for first excited electronic energy, as a result you start seeing the

correction  terms  appearing  in  the  in  terms  of  the  internal  energy. So,  we have  now

achieved quite a lot and what we will do is we in the last lecture for the ideal gases, we

will talk about testing what we have obtained, will use the sackur tetrode equation and

see if we have preserved the extensive property of entropy, and will also check for the

extensive property of quantities like internal energy and so on and so, forth and that will

be  the  end  of  our  discussion  on  monatomic  ideal  gases,  and  we  will  extend  these

concepts to check for the correctness of the formalism for diatomic ideal gases.

Thank you.


