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Welcome  back.  Let  us  quickly  recapitulate  what  we  have  been  discussing  in  the

statistical thermodynamics of a diatomic ideal gas.

(Refer Slide Time: 00:32)

And here what we are doing is, we are trying to see that for a homonuclear diatomic

ideal  gas what happens in the different from the heteronuclear  system. And we have

already specified that in the case of a homonuclear diatomic there are certain symmetry

properties of the total wave function that is required depending on whether there is an

integral or half integral spin on the nucleus.



(Refer Slide Time: 01:01)

Now, in this connection we examined the overall behavior of psi in terms of psi and psi

prime and psi nuclear, where psi prime is comprised of the contributions coming from

psi trans psi electronic, psi vibration and psi rotation, and it was shown that all these first

3 terms are generally symmetric with respect to exchange of the identical nuclei in the

diatomic molecule.

(Refer Slide Time: 01:31)

And we also looked at what happens to the psi rot and it was found that for a symmetric

ground electronic state then psi rot actually is antisymmetric for even for odd values of J



the associated quantum number and it is symmetric with respect to for even values of J.

And therefore,  on  the  whole  we can  say  that  the  wave functions  psi  prime  will  be

symmetric with respect to interchange of identical nuclei in the diatomic molecule if we

have the rotational energy states corresponding to even values of the rotational quantum

number J and psi prime is going to be anti symmetric under identical conditions if we

have the psi rot corresponding to odd values of the rotational quantum number J.

(Refer Slide Time: 02:44)

So,  that  was  the  first  part  for  psi  prime.  We still  have  to  understand the  symmetry

requirement of the nuclear wave function. So, that is what we started discussing and we

took this example of a hydrogen molecule where each nucleus has a nuclear spin of half

and associated with them they have 2 nuclear spin eigen functions which are denoted as

alpha and beta. And then we understood that the total nuclear spin function will now

have 4 possible combinations one is alpha alpha, and another is beta beta, and this is the

third option, and this is a fourth option.



(Refer Slide Time: 03:25)

And then we understood that out of these 4 nuclear spin functions, 3 are going to be

symmetric and only 1 is going to be anti symmetric with respect to interchange of the

identical  nuclei  in  this  diatomic  molecule.  Now, this  is  valid  only  for  the  hydrogen

molecule.

(Refer Slide Time: 03:43)

So, let  us try and move over and see what happens for a general  diatomic molecule

which is homonuclear and let me call it x 2. So, for the molecule x 2 if the nuclear spin

on each nucleus is I in that case each nucleus will have 2 I plus 1 nuclear spin eigen



functions and then the psi nuclear will involve 2 I plus 1 nuclear spin functions. Now,

this  is  exactly  what  we  have  been  showing  for  the  hydrogen  molecule,  the  only

difference that we had was we had a specific value of I. And then it can very be very

easily shown that out of this 2 I plus 1 whole square nuclear spin functions some will be

anti symmetric with respect to the exchange of the 2 nuclei and their number is given by

I into 2 I plus 1. And there will be symmetric nucleus spin wave functions as well and

their number will be given by I plus 1 into 2 I plus 1.

Now, let us check if we have done things correctly here. So, in the case of hydrogen I

said I is equal to half. So, what is 2 I plus 1? 2 I plus 1 is equal to 2.

(Refer Slide Time: 05:00)

Now, I am interested in finding out the number of anti symmetric nucleus spin functions

in the case of hydrogen and what I have written down here without proving it that this

number is equal to I into 2 I plus 1. Now, if I put the value of I here then what I find is

this is given by this value. So, half into 1 plus 1 and that is equal to half into 2 and that is

equal to 1. Now, what was the nuclear spin wave function that we found which is anti

symmetric? There was only one such wave function and that was 1 by root 2 alpha beta

minus beta alpha.

Now, if I try to write down the number of symmetric nucleus spin wave functions in

hydrogen, in general this number is given by I plus 1 into 2 I plus 1.Now what is I plus

1? That is half plus 1 and 2 I plus 1 is 2 into half plus 1. So, I have here this is 3 by 2



multiplied by 2, so the answer is 3. And if you would remember that we had actually 3

possible combinations for the spin nuclear wave function here that was alpha alpha, beta

beta and then 1 by root 2, alpha beta plus beta alpha. So, this general relationship that I

have written down is actually correct for the general case.

(Refer Slide Time: 07:04)

Now, let me look into the different cases where I have the different spin properties of the

nucleus whether it has an integral spin or it has a half integral spin. If I consider first the

nuclear  with  integral  spin  by  definition  these  are  Bosonic  particles  and  for  Bosonic

particles as we have discussed in our earlier lectures, that Bosonic particles must have a

wave function that is symmetric with respect to exchange of the identical nuclei or the

two particles if I have to go Bosonic particles they are identical with each other and the

overall wave function is symmetric with respect to exchange of the two particles.

In this  case I  have two identical  nuclei  and they if  they  have integral  spin they are

Bosonic  in  nature  and  therefore,  overall  size  should  be  symmetric  with  respect  to

exchange of these identical nuclei. Now, it has now two consequences. The first one as

we  see  here  is  as  follows.  If  I  want  to  make  this  symmetric  with  respect  to  the

interchange I either must be having this anti symmetric as well as this anti symmetric or I

can have the following in order to make this symmetric I must be having this symmetric

as well as this symmetric no other combination will preserve the Bosonic properties of

the overall wave function.



Now, let us try and have a look under what condition the symmetry properties of psi

prime  and  psi  nuclear  allow  for  such  combination.  If  I  look  back,  if  I  have  anti

symmetric nuclear spin functions for the nucleus with an integral spin I, how many such

nuclear spin functions are there? I into 2 I plus 1, and they must couple with those side

prime values which are associated with odd values of J. In that case only psi prime is anti

symmetric and psi nuclear is also anti symmetric and in combination they would make

the overall wave function psi symmetric with respect to exchange of the interchange of

the 2 nuclei.

There is another case of course, as I have already mentioned that if it so, happens that my

nuclear spin function psi nuclear is symmetric in nature then it must couple to psi prime

under conditions that psi prime is also symmetric. When can this happen? This happens

when I have psi prime or the this psi prime wave functions corresponding to even values

of the rotational  quantum number J and therefore,  I  would say that well  for a given

nucleus with an integral  nuclear spin I,  there are I plus 1 into 2 I plus 1 symmetric

nuclear spin functions and they are going to couple with those psi prime wave functions

that are associated with even values of the rotational quantum number J.

So, what is the consequence here? The consequence of this observation is as follows.

Now, as you understand that the moment there are allowed combinations of the wave

function they would also put some allowed combinations in the way I can have solutions

for the overall Schrodinger equation and this will; obviously, have implications on the

single particle partition function because my single particle partition functions depend on

the solution of this Schrodinger equation.
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So, let us have a look at what is the effect of the having a nuclear, two identical nuclei

with integral spin in the case of the Bosonic systems. So, if I have a Bosonic system then

I have here overall psi its symmetry property is dependent on the rotational part of psi

prime and psi nuclear, and those two will control the symmetry dependent part of the of

the single particle partition function which I have denoted here as q rot, nuclear.

(Refer Slide Time: 12:09)

In general for any given system I know that what is q nuclear? q nuclear that is equal to

omega n 1 plus omega into e to the power of minus beta delta e n 12 and other terms I



know that these nuclear energy states are so far apart from each other it is roughly about

1000, not even 1000, 10 to the power of 6 electron volt therefore, at normal temperatures

beta into epsilon n 12 this is, it is such a number that the contribution from this term is

essentially 0. Then to good approximation if you are working at high enough temperature

q nuclear has been written down as W n 1.

Now, if I have an integer integral nuclear spin I then what is W n 1? W n one is given by

the number that this is equal to I into 2 I plus 1, integral or half integral. So, these are the

possibilities for I. Now, I have already talked to you about this that, I am sorry just, let

me start from that again

Student: (Refer Time: 13:56)

(Refer Slide Time: 14:00)

That is [FL]. So, let us now have a look at the kind of single partition function that we

will write for the system where I have nuclei with an integral spin or where the nuclei are

Bosonic particles.  And then I  can write  that  the contribution  from rotational  and the

nuclear parts which are going to contribute to the overall symmetry dependence of psi

that is given by a sum of these two terms. This is the first term that appears and this is the

second term that appears.

Now, by now you must  be familiar  with this  kind of a term when summed over all

possible values of J that gives you q rot.
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Now, if I write down for any such system that q rot nuclear is something like q rot into q

nuclear. Now, what is q rot? By definition q rot is equal to summation over J going from

0 to infinity to J plus 1 e to the power of minus theta rot by T into J into J plus 1. Now,

what is q nuclear? We know that q nuclear is equal to degeneracy of the first nuclear

round nuclear energy state plus degeneracy of the first excited nuclear energy state to

beta epsilon, nuclear energy for the nuclear energy states the first the difference between

the ground and the first excited nuclear energy states.

Now, we have already seen that contribution of this term at finite temperatures or the at

the high temperatures that we are interested in this is approximately equal to 0 and there

four q nuclear  is going to be given simply by the degeneracy of the ground nuclear

energy state.

Now, in our notation we understand that only those combinations of psi are acceptable

where I  have  psi  nuclear  and psi  prime coming from through psi  prime coming the

contribution of the rotational psi these two must have certain properties. So, when psi

nuclear is let us say anti symmetric in the case of a Bosonic system. So, anti symmetric

Bosonic system it will have omega n 1 as equal to I into 2 I plus 1, and if it is symmetric

in that case this term will be I plus 1 into 2 I plus 1.

So, this number therefore, as you see that if you know what the nuclear spin is from

experiments then you can very easily find out what is going to be q nuclear. And if you



know that  whether  for  the  given system you require  an anti  symmetric  nuclear  spin

function  or  symmetric  nuclear  spin  function  you  can  very  easily  find  out  the

corresponding  degeneracy  of  that  nuclear  state  nuclear  grounds  energy  state  and

accordingly you can say that well q nuclear is going to be a part either this term or this

term.

So, let us have a closer look at the kind of terms that we have included in this q rot

nuclear.  The  first  term  that  appears  it  is  a  product  of  two  things  these  two  terms

multiplied by a sum and the summation is over all even use of J. So, basically what I am

looking at is as follows. I am looking at the contribution to q rot nuclear coming from the

symmetric psi nuclear that is being coupled to symmetric psi prime. And here in this part

I  have the contribution  of anti  symmetric  psi  nuclear  coupling to  anti  symmetric  psi

prime and therefore, you see that we have preserved the property of Bosonic particles

that they their overall wave function is going to be symmetric with respect to exchange

of the two identical nuclei.

(Refer Slide Time: 19:29)

Similarly, when you think about nuclei with half integral spins, in that case I should be

thinking about the nuclei as the two identical nuclei as fermions and I would demand that

the overall wave functions psi is going to be anti symmetric with respect to interchange

of 2 nuclei. And now I must be having such combination of psi prime and psi nuclear

such that this symmetry property is preserved.



Now, under which condition this can happen? The two conditions under which this can

happen is if you have anti symmetric nuclear spin functions, they must couple with anti

symmetric psi prime. And when does psi prime happen to be anti symmetric with respect

to interchange of 2 nuclei? That happens when J can take up even values it may. So,

happen that  you can  have  the  symmetric  nuclear  spin functions.  But  then  that  must

couple  to  psi  prime  such  that  you  have  an  overall  anti  symmetric  combination  and

therefore, you must couple to only those psi prime values associated with odd J thereby

giving you an anti symmetric psi prime and in that case the symmetric psi nuclear will

couple to anti symmetric psi prime to give the total wave function as anti symmetric with

respect to interchange of the 2 nuclei

So, in this case also we can see that the overall expression for q rot nuclear can be given

in terms of two distinct terms.

(Refer Slide Time: 21:20)

The first one, as you see here is this first term where you have one number multiplied by

a summation over odd values of J and then you have some other number couple to a

summation that runs over even values of J. If we just look back at the rules of the game

that we have introduced so far I quickly understand that the first term is obtained from a

coupling of the symmetric new psi nuclear to anti symmetric psi prime and the second

term is resulting from anti symmetric psi nuclear with symmetric psi prime. Now, all

these are very important as far as understanding of what all possible expressions that the



q rot nuclear can take and preserve the overall symmetry requirement by the underlying

wave function for the diatomic molecule.

Now, if I go back then and say that, well since most of the cases I am thinking about high

enough temperature which is typically room temperature.

(Refer Slide Time: 22:40)

In those cases apart from the hydrogen what happens is in those cases we generally have

this relationship valid that the rotational temperature theta rot is generally much much

less than the experimental temperature. And under such condition what we can do is we

can  very  easily  see  that  this  summation  over  even  J  is  approximately  equal  to  the

summation over all the odd values of J and numerically they are approximately equal to

half of whatever summation that you will get if you summed over all possible values of

J. Now, this actually gives a lot of simplification as far as evaluation of q rot is concerned

because as you see that whenever I am trying to evaluate q rot I have to evaluate some

term like this.

So, depending on whatever the contributions are in general one can have this very simple

expression  for  q  rot  nuclear  which  takes  into  account  all  the  factors  that  we  have

discussed in this class so far. And in this case as you see that we have introduced a new

factor sigma. So, what is this factor sigma? This factor sigma is called the symmetry

number and; obviously, this is equal to 1 when I have a heteronuclear system and this is

equal to 2 when I have a homonuclear diatomic molecule.
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Now, with this simplification then I can say that if we are interested in experimental

temperatures  that  are  much  much  greater  than  the  rotational  temperature  of  my gas

molecules,  in  that  case  I  can  very  easily  write  down  the  q  rot  nuclear  under  such

circumstances by this very simple algebraic expression like this. And this is the limit of

this summation under the condition that theta rot is much much less than T.

Now,  I  am  going  to  put  back  all  these  results  together  to  write  down  the  basic

information that we derived for the ideal gas comprised of capital N diatomic molecules

and is maintained at a given temperature T, in a volume V.
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Now, what we have got is under the rigid rotor simple harmonic oscillator approximation

then the single particle partition function is given by an expression like this. So, let us try

and understand the source of each of these expressions. So, I know that this first term is

nothing, but q trance.  This term appears simply because this  molecule as a whole is

moving about in the confining volume V at a given temperature T.

(Refer Slide Time: 26:02)

Now, this term comes from the underlying electronic structure of the molecule and it

requires me to talk about q electronic is equal to summation over all possible electronic



energy levels, then omega e, i e to the power of minus beta epsilon electronic I. And we

have seen that by setting the 0 of energy at the ground electronic state I can very easily

write this as omega e 1 plus omega e 2 into e to the power of minus beta delta epsilon e 1

to, where this is the energy difference between the ground and the first excited electronic

state and that can be obtained very easily from experiments.

Now, there are two terms other otherwise which appear over here. So, this term that you

see, this accounts for the simple harmonic oscillator nature of the bond that is holding the

2 nuclei together and theta vibe is a temperature which corresponds to the vibrational

temperature  of  the  chemical  bond  that  we  are  talking  about.  And  this  is  the  high

temperature limit of the contribution to this small q coming from the rotational degrees

of freedom. And once you know this then you can very easily go ahead and find out the

partition function for all the capital N particles that are identical to each other and that

are not interacting with each other. So, that is given by small q to the power of N divided

by N factorial and once you have obtained this relationship then you are all set to get the

thermodynamics of this ideal gas because l in capital Q is related to the Helmholtz free

energy of the system.

So, in summary what we have learned so far in this course for an ideal gas is as follows.

The ideal gas may be comprised of an atom, capital N atoms, it may be comprised of

diatomic molecules or even it may be comprised of polyatomic molecules, of these each

molecule is running about within the confining volume independent of where the other

molecules are.

So,  this  is  the  part  which  contributes  this  translational  part  of  the  molecule  in  the

confining  volume contributes  to  the  volume explicitly  volume dependent  part  in  the

partition function that is V by lambda cube, where lambda is a term which is known as

the thermal the Brawley wavelength. And after this you have terms which appear from

the internal structure of the molecule. Now, this in this internal structure in the simplest

case  of  atoms  you  have  electronic  energy  states  and  the  nuclear  energy  states

contributing to small  q. Now, if you have a little more complicated situation like the

diatomic molecule in addition to these electronic and nuclear energy states, you are going

to have to take into account the vibrational fine structure that is a vibrational energy

states as well as rotational energy states associated with each electronic state.



So, for in general the strong for a given molecule at high enough temperatures you are

going to have the system residing in the ground nuclear energy state. And when it resides

in the ground it nuclear energy state then it may reside in the ground electronic state or

even may be to some extent in the first excited electronic state at the normal working

temperatures.  And  depending  on  the  temperature  some  of  the  vibrational  and  the

rotational energy states of each electronic energy state will be populated. And all of these

are  going  to  contribute  to  the  observed  average  property  that  we  measure  in

thermodynamics.

So, in the next lecture I will take up the problem of calculation of specific heat in an

ideal  gas  and  I  will  show you  how  the  thermodynamic  property  is  affected  by  the

contribution of the translational degree of freedom, and the underlying structure which

complements the contribution coming from the translational motion.

Thank you.


