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Welcome, we will continue our discussion of the statistical thermodynamics of an ideal

gas comprised of diatomic molecules. And in today’s lecture we are going to talk about

the homonuclear diatomic ideal gas. So, as discussed before the homonuclear diatomics

system is comprised of molecules like this, where both the atoms forming the molecules

are of the same type. So, examples are hydrogen, deuterium, oxygen nitrogen and so on

and other halogens. In this case, before we go into the discussion of how to work out the

statistical thermodynamics of a system like this, it is very important to understand the

difference between this case from the heteronuclear system. In this case, simply because

the two nuclei are the 2 atoms constituting the molecule are identical, there are additional

demands of symmetry from in this system.

So, the first thing that we should note down that the total  wave function size of the

molecule must possess rather specific symmetry properties under the operation where we

interchange the two identical nuclei. Now, later we are going to have a very detailed look

at these two terms first what I mean by this interchange of the two identical nuclei, and



second what kind of specific symmetry properties am I talking about if I want to just

show you highlight the kind of symmetry property I am talking about here. We would

like to have this overall total wave functions psi symmetric with respect to interchange of

two identical nuclei for integral nucleus spin.

But if it so happens that the nuclear spin is half-integral, in that case psi must be anti-

symmetric with respect to interchange of the two nuclei. And therefore, let us take up

these little different concepts of interchanging of the two identical nuclei and what effect

it has on the overall wave function as well as the single particle partition function. And

then we consider how to assign what is the specific symmetry requirement for different

nuclei having integral or half-integral spins.
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So, the first thing that we would talk about is something that has been shown here in this

approximate diagram. For the sake of simplicity, I will confine my discussion here in a

two-dimensional space. So, this is the direction of my x-axis, and this is the direction of

my y-axis. This is something that represents the nuclei  and the electron cloud in the

diatomic molecule, which is given here. Now, the red portion corresponds to the nuclei

and  the  yellow portion  corresponds  to  the  electron  cloud  surrounding  it.  So,  this  is

obviously a rather approximate representation of the diatomic molecule. And now if I

carry out an interchange of the identical nuclei in a diatomic molecule, what I will do is I



will do this in two steps. So, the first step is we will invert all the constituent particles of

the molecule including the electrons and the nuclei through the origin.

So, in this picture, where is the origin, this point is my origin. So, if I want to invert this

at this body or this point through this origin, I should appeared here. And therefore, what

I am trying to say is this is an inverted image of this and vice versa. Now, as you see that

I have this particle one and this particle two, and here for the sake of our understanding, I

have coloured the nucleus of the particle one as red and the electronic cloud as yellow.

Here for this particle two, what I have done is I have used as the center black and as the

electron density green.

Now, so the in the first step this even this is my starting configuration I have one here,

two here and I would like to invert all the constituent particles through the origin, and

this would definitely result into something like this. So; obviously, this go will go to this

position as we see in this picture, and this will come to this position as we see in this

picture. Now, after this, we would have a second step of inverting the electrons back

through the origin. And this is what we will get.
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So, now, if I compare these two pictures what I get is through this interchange of these

nuclei, what I have obtained is starting from this structure simplified highly simplified

structure, I have landed up in a structure like this. Where as you see that it is the same

electron  density  at  these  two  positions,  it  is  the  same electron  density  at  these  two



positions,  but only the nuclear positions have been exchanged.  So, this  is a pictorial

representation  of  what  I  mean  by  interchange  of  the  identical  nuclei  in  a  diatomic

molecule, which means that if to start with I had a configuration like this. I am going to a

configuration like that as a result of the interchange of the identical nuclei.
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Now, under such condition, under such operation - this inversion, we would like to talk

about what happens in three dimensions. Now, obviously, in three dimensions you can

work in the Cartesian coordinates. In the case of the Cartesian coordinates, what you will

find is that inversion through the origin results in transformation of the coordinate x, y, z

into minus x, minus y, and minus z. In many cases in quantum mechanics, the exactly

solvable models involve solution of the Schrodinger equation using the spherical polar

coordinates just as in the case of hydrogen atom. So, in that case instead of x, y and z,

one uses the three coordinates for each point r, theta and phi. Now, inversion through the

origin results in the following conversion.
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So, let us have a pictorial look at what these conversions mean and then proceed further.

So, this is a representation of the Cartesian coordinates in the three-dimensional space

this  is  the direction  of  my x-axis,  this  is  the direction  of  my y-axis,  and this  is  the

direction of my z-axis. So, this plane is nothing but the x, y plane. Now, if I have one

point here with which when inverted through the origin will land up here. So, if this

point is above the x, y plane towards the direction of positive z by inversion through the

origin, it will land up below the x, y plane and near and in the direction of the negative

part of the z-axis.

Now, if I introduce here the spherical polar coordinates, and define them as x is r sin

theta cos phi, y is r sin theta sin phi, and z is are cos theta, where I have taken the same

point having the coordinates x, y, z. And I define it is radial distance from the origin as r.

So, this distance between this point, and this point is my radial distance r. Now, what is

theta? If I take this straight line and find out the angle made by it with the positive side of

the z-axis that is given by theta. So, this is where it appears in the relationship between x,

y, z, and r, theta, phi.

And there is another coordinate  which gives you the if  you take a projection of this

vector on the x, y plane and then you find out the angle made by this particular line

which is the projection of this r vector on the x, y plane that is phi. And phi also appears

in the relationship between the two sets of coordinate systems, but z is independent of



phi. Now, with this definition, we understand that if we replace now x by minus x, y by

minus y, and z by minus z, there are only certain relationships, which are allowed for the

new values of r, theta prime, and phi prime. And these values are given in terms of the

changed numbers that I have noted here obviously, inversion preserves the distance from

the origin and therefore, r remains unaltered. Then if you think about theta instead of

being here, now for this theta is going to be this distance, and the angle it makes with the

positive side of the z axis, so that would be pi minus theta. And similarly you can very

easily show that phi will be replaced by phi plus pi.
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Under such condition, let us now try to think about what happens when I carry out this

inversion or which means that a change of the coordinate system such that x goes to

minus  x,  y  goes  to  minus  y, and  z  goes  to  minus  z  or  some equivalent  coordinate

transformation  as  far  as  a  spherical  polar  coordinates  are  concerned.  Now, we have

already noted that my total wave function is a product of something like psi prime and a

psi nuclear. Now, psi nuclear is the nuclear wave function and it is associated with the

solution of the Schrodinger equation for the nuclear energy Eigen states. Now, what is

psi prime in our discussion of the heteronuclear diatomic molecule, we actually looked at

the different dependences of this psi prime on the translational degree of freedom, and

electronic degrees of freedom, then vibrational and rotational degrees of freedom.



So, under the approximation of rigid rotor simple harmonic oscillator, I can write down

that psi prime is a product of these individual wave functions psi trans corresponding to

the  translational  motion  of  the  center  of  mass  of  the  molecule  on  the  whole.  Psi

electronic  is  corresponding  to  the  solution  of  the  electronic  energy  Eigen  states

corresponding to the molecule that we have at hand. Psi vibration corresponds to the

vibrational  fine structure associated  with this  diatomic  molecule.  And finally, psi  rot

corresponds to the rotation of the molecule like a rigid rotor.

So, once we have this in hand, then the question is when I do the inversion or carry out

some  kind  of  a  coordinate  transformation,  then  what  would  be  the  result  of  such

transformation on the different parts of psi prime. So, let us investigate the different parts

of psi prime to start with. And this is what we get. Now, psi trans - the first term, psi

trans it depends only on the center of mass coordinates. And therefore, when you carry

out  the  inversion  of  the  coordinates  the  center  of  mass  coordinate  actually  remains

unchanged. And therefore, I would say that through this interchange of identical nuclei,

psi  trans  is  going  to  remain  unchanged.  So,  psi  trans  is  symmetric  with  respect  to

interchange of identical nuclei in this diatomic molecule.

Similarly, if I look at psi electronic, what I find is that in most of the cases, in most of the

diatomic molecules, in general the ground electronic state is supposed to be symmetric

with respect  to  inversion through the origin.  As a result  I  would say that  under  this

interchange of identical nuclei in this inversion process that will also leave psi electric

electronic in most cases unchanged. Therefore,  this  is  symmetric  with respect to this

operation.

Now, think about psi vibration, in the case of psi vibration, this depends on displacement

from the equilibrium bond length.  So,  this  is  some kind of an internal  displacement

which does not depend on where exactly what has happened whether you are looking at

it in the after inversion or before inversion. So, once again these displacement within the

molecule will remain unchanged when I interchange the two nuclei. As a result all the

three wave functions that are shown here, psi trans, psi electronic and psi vibration will

remain unchanged at this is a symmetric with respect to interchange of identical nuclei in

the diatomic molecule. But of course, I have not talked about psi rot, so let us go and see

have a look at a closer look at what happens psi rot. And if at all it has any it shows any

effect as a result of this interchange of identical nuclei.
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So, the next thing that I do here is focus on this. Now, under the rigid rotor harmonic

oscillator approximation,  I understand that psi rot is nothing but the rigid rotor wave

function. And this has the same property as the angular part of the wave function for

hydrogen atoms. Now, in this particular observation tells us that I can use the properties

of  hydrogen  atom orbitals  to  understand  the  symmetry  nature,  the  nature  symmetry

properties of the wave functions for a rigid rotor case.
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So,  this  is  the  first  case.  So,  where  what  happens  psi  rot  different  rotational  wave

functions are associated with different rotational quantum numbers J. We have seen that

these values of J they can vary from zero then take up values like 1, 2, 3 up to infinity.

Now, let me take this first case where J is equal to 0, now when J is equal to 0, the

symmetry properties of the wave function is like the 1 s orbital of the hydrogen atom.

And in this case what we have done is we have shown you what happens to the s orbital

when this is the direction of x-axis, this is the direction of positive y-axis, and this is the

direction of z-axis.

Now, if I take a point here and I invert it through the origin which is at the center of the

orbital that will there be any change in this wave function in the sign, the answer is no.

And therefore, the result of inversion is that it will leave the wave function of J equal to 0

unchanged and therefore, we conclude that whenever I am talking about the J equal to 0

wave function of a rigid rotor I must be having a symmetric psi rot. Now, let me also

look at the other cases like when J is equal to 1.
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Now, when J is equal to 1, this is the case where I have the rigid rotor wave function

displaying symmetry properties exactly like the p like. So, now, if it is p like then here

we have shown the dependence of the orientational dependence of the different solutions

which are associated with J equal to 1. There are three solutions. And as you see the

point is that here if I carry out an inversion through the origin, which are here at the



nodal points of the p orbitals I know that the wave function changes sign as it goes from

x to minus x, or plus y to minus y, or plus z to minus z. And therefore, I would say that

for J equal to 1, the wave function undergoes a change in a change in shows a change in

the way it is projected across the row center and here the associated psi rot must be anti-

symmetric.
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Similarly, if I go ahead and look at what happens to j equal to two once again these are d

like properties and therefore, the wave function is shown to be symmetric with respect to

the interchange of identical nuclei.
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Now, with all these results in hand then what we can do is we can say the following. I am

looking at  this kind of a process where I am going to look at the interchange of the

identical nuclei.  And I am going to groove this through an inversion by an inversion

through the origin which is the midpoint as shown over here. Now, the pre symmetry

property of overall psi will now depend on the symmetry property of psi prime and psi

nuclear. I will come to the case of psi nuclear a little later, but let me first look at the

symmetry properties of psi prime. Now, psi prime depends on these four factors of which

this and this these are clearly symmetric with respect to the interchange of the nuclei. So,

we are left with these two terms psi electronic and psi rotational.

Now, as I have already mentioned that in most of the cases psi electronic is a symmetric

ground electronic state which remains unchanged with respect to inversion through the

center.  Therefore,  we  find  that  the  symmetry  requirement  on  psi  prime  is  imposed

entirely by psi rot. And then we can say that psi prime is symmetric if you are looking at

rotational energy states associated with even values of the rotational quantum number.

Now, psi prime will be anti symmetric with respect to interchange of the identical nuclei

in a diatomic molecule, if we are looking at the rotational energy states associated with

odd values of J. So, this is the most common scenario as far as the behaviour of psi prime

is concerned in response to interchange of identical nuclei in this diatomic molecule.
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Obviously, then the next part is to consider psi nuclear. Now, when I consider psi nuclear

will go very slowly here. Because there are several concepts which are associated in this

treatment where we find that it is not enough to talk in terms of the electronic energy

states, overall translation of the molecule as well as the as an electronic nuclear as well

as the translational energy of the molecules.  But we have to very closely look at the

consequence  of  having  two  identical  nuclei  which  must  preserve  certain  symmetry

requirement depending on what the nuclear spin is.

Now, going back let me take an example. Let me take the simple example of hydrogen

molecule. In the hydrogen molecule, there are two nuclei; the two nuclei corresponding

to the two hydrogen atoms. Now, if I ask you the question what is the nuclear spin on

each of these hydrogen atoms? You would say that from our initial  knowledge about

atomic structure. I know that each hydrogen atom nucleus is associated with a nuclear

spin of half. And then I would say that then there will be nuclear spin eigen functions

alpha and beta there will be two such nuclear spin eigen functions and they are up tend

by saying that well  if  you have a nuclear  spin I,  how many spin nuclear  spin eigen

functions do you expect to I plus 1.
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Now, when I have I is equal to half, I understand that 2 I plus 1 is equal to 2 into half

plus 1 that is equal to 1 plus 1 that is equal to 2. So, one of these nuclear spin states is

give the wave function is given this symbol alpha and the other one is given the symbol

beta. Now, I have two such nuclei. So, this is for one hydrogen atom nucleus, and I have

two such hydrogen atom nuclei. Then the question is if I can assume that the nucleus

states  of  each  hydrogen  atom are  occupied  independent  of  each  other,  then  the  psi

nuclear will involve how many nucleus spin functions, it will involve four nuclear spin

functions. And these are alpha-alpha, beta-beta, 1 by root 2 alpha-beta plus beta-alpha,

and 1 by root 2 alpha-beta minus beta-alpha.  So, this  means that both the nuclei  are

existing in the state such that it has spin wave function alpha and this has spin wave

function beta.

Now, there  is  the  second  possibility  is  that  both  of  them  are  existing  in  the  state

corresponding to beta spin wave function for the nucleus one and beta spin function for

the nucleus two. It may so happen that one of them have alpha spin wave function, the

other one has beta spin wave function. In and quantum mechanics requires that under

such condition you take a linear combination of these two and these are the probable

combinations that are allowed by this in this particular case.

So,  these  four  nuclear  spin  wave  functions  are  alpha-alpha,  beta-alpha  then  a

combination of alpha-beta, and beta-alpha; Out of these as you see that I have clubbed



these three together. And I have labelled the fourth one separately. Do you understand

why? That is because if you closely look into the symmetry properties of each of this

nuclear spin wave functions, you will find that these three wave functions are symmetric

with respect to interchange of the identical nuclei.
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And here these two are anti-symmetric with respect to interchange of the two identical

nuclei. Now, this is some concept that we are going to use further where we use it to

understand what are the symmetry properties of psi nuclear would be. In the next lecture,

we shall once again start from this particular example, and discuss the general symmetry

requirement  of  psi  nuclear,  and  then  the  overall  symmetry  requirement  of  psi  in  a

homonuclear diatomic molecule.

Thank you.


