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Welcome back. So, we are discussing here the statistical thermodynamics of a diatomic

ideal gas, where we have already seen that how to think about the description of the

microscopic  state  of  a  heteronuclear  diatomic  ideal  gas  that  is  maintained  under  the

macroscopic condition of a given temperature volume and number of particles.



(Refer Slide Time: 00:39)

And here we have highlighted the fact that we could do the statistical thermodynamics in

case of the monatomic ideal gas because of the seperabilty of the total energy of a single

atom  of  the  system  into  the  translational  motion  of  the  atom  plus  the  underlying

microscopic structure of the atom. And in the case of diatomic ideal gas, we have also

shown that this separation is also possible into the translational motion of the overall

molecule as well as the underlying microscopic structure of the molecule that we have at

hand.
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Specifically, we talked about how to separate out the effect of the internal structure of the

molecule in terms of not only the nuclear energy levels and the electronic energy levels,

but  also  taking  into  account  the  separation  into  the  vibrational  energy  levels  and

rotational energy levels associated with each electronic energy level of the molecule. So,

now we are quite ready to start calculating the single particle canonical partition function

using these results.

(Refer Slide Time: 01:54)

So, that is exactly what we will do next, but before that let us go back and revise the

model that we are discussing here at the microscopic level for the heteronuclear diatomic

molecule  in  terms  of  the  center  of  mass  coordinates  and  the  relative  or  internal

coordinates. And as you see here, this is the expression that we have already obtained

through a series of coordinate transformations. Now, here the highlighting portion is that

the first term that you see here that corresponds to the center of mass motion in the three-

dimensional volume without any interaction term appearing in the energy. And therefore,

I can say that for every molecule in this gas the translational motion of the molecule can

be modelled as the translational motion of a free particle or of mass M in the volume v

clear.

Now, the other things that we can say from here are as follows. We can say that the

internal motion which is characterized by these two terms. So, this is a kinetic energy

term and the internal motion is associated with this potential energy term. What I am



actually looking at that one atom is fixed at origin, and the other atom in this diatomic

molecule is moving relative to the first a fixed one with a reduced mass of mu.

We have already discussed the feasibility, and how to obtain or how to separate out the

total energy of the system in these two separate contributions. We have also seen that the

internal  structure  of  a  molecule  should  be  associated  with  the  vibrational  and  the

rotational fine a kind of energy states. But how do I go from this kind of an expression to

the different and associate the internal motion with the vibrational and rotational motion.

So, that is the question that we are going to ask next.

(Refer Slide Time: 04:11)

So, let us have a look at the kinetic energy of the internal coordinates. So, this term is

given in terms of the reduced momentum pi 12. So, it is pi 12 square divided by 2 mu.

Now, let me revisit the definition of pi 12, so that is the reduced mass mu multiplied by

the rho 12 dot that is the rate of change of the vector rho 12 with time.



(Refer Slide Time: 04:45)

If I may remind you that when I had this is my molecule one and this is my molecule 2,

if I sit on this molecule 1, then rho 1 2 is the vector separating the two nuclei if the origin

is on the particle 1. So, now or vice versa you can use the definition that you want. Now,

how can the vector rho 1 2 changes with time? A vector can change with time either by a

change in  magnitude  or  by a  change in  the  direction.  So,  let  us  now examine  what

happens  when  in  a  diatomic  molecule  there  lily  relative  separation  vector  rho  1  2

changes either in magnitude or in direction,  and what kind of internal motion we are

talking about.
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So, let us first focus on the change in magnitude. So, when you are having a change in

magnitude, so basically what you are saying is if this is the equilibrium bond length of

the two atoms, then when this vector changes in magnitude, you are going to have one

kind of situation where the vector is now longer than the equilibrium bond length. Or it

may so happen that the vector is now smaller than the equilibrium bond length. As a

result, I can say that it is essentially like if a spring is connecting the two particles, there

is a bond which is vibrating about its mean position of the equilibrium bond length, this

is when the bond is stretched, and this is when the bond is compressed.

So, this is exactly what we have shown here. And therefore, I understand that the rate of

change  of  the  vector  rho  1  2  with  time  can  happen,  when the  bond is  executing  a

vibrational motion, so that the two atoms they are as if they are connected by a spring.

And this spring is either expanding or it is contracting giving rise to some kind of a

vibrational motion.

(Refer Slide Time: 07:16)

Now, let us next consider apart after this representation of molecular vibration, let us

then consider the change in direction of this separation vector rho 1 2. So, this is the one

obviously, that we are going to associate with the molecular rotation. So, this is one of

the situations. You started with the two atoms, which are connected by a spring. Now,

this spring is in some stretched condition and then between the time, it goes from here to



a stretch it another stretch it condition, what can happen is this molecule can move about

this position around this axis, and that is what will give rise to a rotation.

So, as you see here, this is exactly what we have represented saying that for a given

length of the spring which means that for a given distance between the two atoms, when

it is fixed in this length, the molecule can rotate. Once again, if the molecule if the bond

is now stretched further, the molecule can again rotate like this. So, what you see is the

importance here is that the time scales because of the difference in the energy scales. The

time skills that are required to stretch is much, much longer than the time scale that the

molecule requires to execute this rotational motion.

So, basically what will happen is that two atoms will stretch, the bond will stretch, and

go like this or go like this. So, the time they require to do this is let us say some time t,

but  while  they  are  here  before  they  can  start  compressing  or  expanding further,  the

molecule can rotate. And this is because of the separation in the energy scales that you

see in that we have already seen.

(Refer Slide Time: 09:22)

And therefore, under such condition the microscopic model of a heteronuclear diatomic

molecule requires us to examine the potential energy of the internal coordinates as well.

Now, the  potential  energy usually  depends  only  on  the  magnitude  of  the  vector  for

central potentials. So, let me assume that the vibration is very small for this chemical

bond, and it takes place around an equilibrium distance of rho naught. Now, if that is so



then I can write down using Taylor expansion rho u as rho of rho is equal to u of rho

naught plus u prime evaluated at rho naught into rho minus rho naught plus half u double

prime evaluated at rho naught into rho minus rho naught whole square and so on and so

forth.

(Refer Slide Time: 09:57)

I  can  very  easily  neglect  this  higher  order  terms  in  rho  minus  rho  naught  if  the

displacement  from the equilibrium bond length is  small.  I  can also have some more

simplification, because here what is u prime, u prime is equal to del u del rho evaluated

at rho equal to rho naught that is equilibrium bond length. If you will remember then we

have already shown that as a function of rho, if I show u rho that shows a minimum for

rho naught. And therefore, when evaluated at rho naught, this term must be equal to 0,

and therefore, this goes to 0. And then I have u rho simplifying to u of rho naught plus

half of u double prime that is the second derivative of u with respect to rho evaluated at

rho equal to rho naught that is the equilibrium bond length into rho minus rho naught

whole square.

Now, let us say that I assume that this is the zero of the energy scale for this kind of

vibrational motion. So, I put this equal to 0. So, essentially the potential energy term that

we saw in our total energy is a harmonic energy term that is given by that is proportional

to rho minus rho naught whole square. So, what do I learn from here, what I learn is first

this kind of expansion is valid if rho minus rho naught is small. And when will rho minus



rho naught be small, of course if you have a stable chemical bond. You can see that it is

being  held  by  a  very high  force  constant  k.  Therefore,  any amount  of  stretching  or

change in the bond length from the equilibrium bond length will require a very high

energy, and therefore you would say that this is going to be less possible if a certain

amount of energy is available to the system. And therefore, I can very easily say that the

kind of motion that is being executed by the diatomic molecule, when I fix the atom one

here and the other one is moving about with respect to it in a vibrational mode then it

must be something like the simple harmonic vibration.

So, this simple harmonic vibration is related to the change in magnitude of the separation

vector rho 1 2 keeping this atom fixed, and another mass of another body of mass mu

moving about with respect to it. Then where does the rotation come into the picture of

course, then I would say that if I have small vibrations, for each vibrational state I will

have the angular motion. And this angular motion can then be approximated as that of a

rigid dumbbell of fixed inter-nuclear distance. So, once again simply because there is a

difference in time scale in which the vibrational motions occur, and the time scale which

is associated with the rotational motion this appears to be a reasonable approximation.
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So, where do we go from here? We go from here to establish the fact that now I have a

rigid  rotor  harmonic  oscillator  approximation  for  the  contribution  of  vibrational  and

rotational energies to the overall energy of a single molecule in the diatomic case. Now,



if that is so, we have now established how we are going to model the E vibration and E

rotation. E vibration will be essentially modelled in terms of a harmonic oscillation; and

E rotation is going to be modelled in terms of a rigid rotor. So, accordingly we can write

down the canonical partition function as a product of all these different contributions for

the single particle. E trans is giving us the giving rise to the term q of the center of mass.

The E vibration term giving rise to the canonical partition function due to the vibration E

rot gives the rotational partition function contribution. Similarly, we have seen how to

get the q electronic and the q nuclear part.

Therefore, the only thing that I find here as new is how to model these two parts. I am

going to model this part as the motion of a single particle, how to calculate the single

particle canonical partition function when our free particle is moving about in a three-

dimensional box, so that is the small q that we have already derived in the last class.

(Refer Slide Time: 15:45)

And we know that this small q center of mass is going to be nothing but V by lambda

cubed  where  lambda  squared  is  related  to  h  square  divided  by  2  pi  m  k  B  T, and

therefore, this is a function of temperature, and this is known as the thermal de Broglie

wavelength. And this is the volume in which this particle is moving about. We have also

seen how to get q electronic and q electronic is generally written as w e 1 that is the

degeneracy of the ground electronic state then w e 2 into E to the power of minus beta

delta E 1 2, where beta is equal to 1 by k B T. We have already done this.



And therefore, if from experiments or from some calculations, we can know what delta

epsilon 1 2 are and we have information what these degeneracy’s are, I can find out q

electronic.  Similarly, I  have also shown you how to get the q nuclear  as omega n 1

because the other terms are unimportant at finite temperature. And this is a constant term

you can have some idea about this constant term, but this will eventually not appear in

the final thermodynamic expressions. So, therefore, in the diatomic molecule case, the

important thing that we are going to show you here is how to calculate q rot and how to

calculate q vib.

(Refer Slide Time: 17:30)

So, let us have a look as to how to what would be the analytical expressions of these two

parts,  if  I  assume  that  the  vibrational  motion  of  this  chemical  bond  is  going  to  be

approximated by a simple harmonic oscillator with an intrinsic angular frequency omega.

And therefore, I can very easily say that q vib is given by an expression like this clear.

Now, as you see here I have the information regarding the microscopic properties of the

system in this angular frequency omega and therefore, it is found easier if you introduce

one particular constant. So, I have this term beta h cross omega.

And if I write it down I explicitly by in terms of beta, so I have h cross omega by T. So,

what is a constant for a given substance given chemical type of chemical bond, this is a

constant  for  a  given  type  of  chemical  bond,  and  the  temperature  is  decided  by  the

experimental  condition  that  you  are  controlling  at  the  macroscopic  level.  So,  the



characteristic property of the system is now reflected in terms of this quantity which I

call theta vib, and I define it as h cross omega divided by k B.

So, what is theta vib, theta vib must be having the dimensions of temperature. And if I

put it back then the expression for q vib in terms of theta v now turns out to be this.

Therefore, if from your experiments, you know what theta v is then you can calculate q

vib.  Similarly,  we  can  have  within  the  approximation  of  a  rigid  rotors  harmonic

oscillator,  q  rot  is  this.  And  here  also  what  we have  done is  we have  introduced  a

characteristic  constant  theta  r  or  theta  rot.  And by definition  this  is  also  having the

dimension of temperature and this is given by B bar by k B, where this is the rotational

constant as appropriate for the underlying energy levels which are for the Jth energy

level, the degeneracy is 2 J plus 1. And I know that then this contribution that will come

here is theta r and here I should have also J into J plus 1. So, I am sorry this needs a

correction.

[FL].

Student: (Refer Time: 20:57).

[FL]

So, once we have established the seperabilty of the canonical partition function for the

single particle into these different contributions, then we can go ahead and calculate the

canonical  partition  function  under  the  rigid  rotor  simple  harmonic  oscillator

approximation. Now, what we have shown here are the expressions for this small q vib

and small q rot. Under the condition of a simple harmonic oscillator, approximation q is

given by this.
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Now, if I have a closer look at what are the contributions here so q vib is equal to it

depends on this quantity E to the power of minus beta h cross omega. So, what is omega,

omega is the intrinsic angular frequency of vibration of the bond between my molecule A

B  or  between  my  molecule  one  and  my  molecule  two.  Now,  therefore  this  is  a

characteristic property of the system that I am considering.

So, now, let us have a look and write it out in a little different way. So, I am writing out

beta h cross omega as h cross omega by k B T. And I understand that this part this h cross

omega by k B, this is going to be a constant for a given system, because h cross is a

universal constant, k B is a universal constant, and the system dependent property omega

is here. So, let me define here as theta v this quantity h cross omega by k B. So, theta v is

a characteristic property of the type of chemical bond that I am considering. And here I

understand that theta v must be having a dimension of temperature.

If that is so then I can go back and write down q vib as into the power of minus theta v

by 2 T divided by 1 minus e to the power of minus theta v by 2 T. Now, if I know which

harmonic frequency I am going to assign to my bond, then I can calculate theta v and

accordingly I can compute what q vib is going to be at a given temperature T. Similarly,

in the case of the rotational partition function, you see that here and summing over all the

rotational energy levels and each of the rotational energy levels they have 2 J plus 1



degeneracy that is the source of this term here. And this is what I have where I have used

the notation that theta r is equal to h cross then B by k T k B.

Now, once  again  the  B  bar  that  is  the  rotational  constant  that  contains  information

regarding specific to the molecule that I consider. So, this is also a characteristic property

of the molecule. And I can perform experiments in rotational spectroscopy to find out B

bar, and hence I should be able to find out theta r. And therefore, what I have achieved

over here is as follows. We have achieved the computation of the small q vibration and

small q rotation in terms of these characteristic properties vibrational temperature and

rotational  temperature  of  the  kind  of  bond  that  we  are  talking  about  at  a  given

temperature T.

(Refer Slide Time: 25:55)

Now at this stage what we have to talk about is we are trying to understand the effect of

the underlying structure of the molecule on thermodynamics. So, let us see and try to

understand  what  I  mean  by  the  effect  of  internal  structure  of  the  molecule  on  the

thermodynamic property of the system. So, first we have already seen that small q can be

separated into a contribution from the center of mass and the internal  structure.  And

therefore,  the  capital  Q  for  the  N  particle  system,  where  all  the  particles  are  non-

interacting and indistinguishable, I can write it like this. And accordingly the ln q term

now has contributions from the center of mass term it has some contribution which is



dependent only on N and there is another contribution which adds up from the internal

structure of the molecule.

So, what is the consequence of this the consequence of this is since I have f is equal to

minus k B T ln Q, then if will have an expression like this. So, as you see in f I have one

term that is a direct contribution of the center of mass exist a separable separation of the

partition  function into a  center  of mass contribution this  is  where it  comes from the

dependence on N. And here what I have is the effect of the internal structure is present in

this term.

(Refer Slide Time: 27:18)

And the consequence is that I would say that in this case, I can very easily write out the

different terms possible and so I can very easily identify that now my F the overall free

energy Helmholtz free energy of the system has one contribution that is entirely due to

the center of mass which is this. There is one contribution which is entirely related to the

q rot which is F rot. And another contribution coming from the q vib which adds this

correction F vib here. And similarly there are corrections to F in terms of electronic and

nuclear.

In the last class, when we calculated F for the monatomic case, we did not have these

two terms. They are also the Helmholtz free energy separated into these three different

terms.  And  here  in  the  diatomic  case,  we  have  in  addition  and  an  additional  two

additional terms coming because of a contribution of rotation and vibration to the overall



thermodynamic  property  of  the  system.  So,  this  is  what  we  mean  by  the  effect  of

structure on thermodynamics.
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Now, let us go and have a look at the further consequence of this. Now, if I can separate

out the free energy into different contributions like this, what would be the effect of

structure on internal energy, do I expect any structure? Well, U is a derivative of F with

respect to beta, therefore, in general I expect that if F is separable into such different

contributions, U should also be separable into all these contributions. Therefore, can I

identify the terms that are telling me about the effect  of the internal  structure of the

diatomic molecule, yes, these are the two terms, which will tell me about the internal

structure present in the molecule. Going further, we can say that this will have impact in

our measurements as well.
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When  I  measure  then  I  am  basically  measuring  properties  like  heat  capacity.  By

definition heat capacity is derivative of U; and U is separable into all these terms for the

non interacting particles. And therefore, while measure I should be able to separate out

contributions that arise from the center of mass, the rotational motion, the vibrational

motion of the bond about its equilibrium bond length and also contributions coming from

electronic and the nuclear degrees of freedom. So, is it possible to actually separate out

these? The answer is yes, it is possible.
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Because if you look at the for this diatomic case, what is the vibrational contribution to

the internal energy that is nothing but you know ln q vib you take a del del beta of this

quantity at constant volume and number of particles. You see that what I have is one term

which is theta v by 2 plus some term which is coming here. And the heat capacity then

takes up the following form. So, these terms were not there when I talked about the

monatomic case, you can go back and check that very easily.
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Then what happens is you can also find out the rotational contribution. Here actually

before you go and try out the derivative of the rotational partition function, actually this

infinite series sum can be simplified at different ranges, which are pretty well known.

And  as  you  can  see  that  instead  of  evaluating  an  infinite  summation  at  very  high

temperature, we can either have q rot given by t by theta r or by a finite summation or if

the theta r values are large then some other summations are possible.
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And so  if  you  know the  theta  v  and  theta  r  values  from literature  which  has  been

tabulated by carrying out different kind of experiments. Then one can go ahead and find

out what is going to be the vibrational contribution to the overall heat capacity of the

ideal diatomic gas or one can even assess what is going to be the rotational contribution

to the specific heat. Or in other words, when you sub, when you are looking at measuring

specific heat, what you are doing is you are supplying changing the temperature of the

system under  either  constant  volume or  constant  pressure  condition.  In  this  case,  at

constant volume, you are essentially looking at what is the amount of energy that for this

particular  system is  required to excite  some population amongst  its  rotational  energy

states.

What fraction of energy will be used up in changing the population of the rotational

energy states,  what  fraction  will  be used to  change the  population  of  the vibrational

states. And if at all the amount of energy that you give is sufficient to cause a change in

population as you go from the ground electronic state to the excited first or the second

excited electronic state. So, when you do a measurement, you do not have any idea as to

which part of the total supplied energy is being partitioned into the different underlying

microscopic degrees of freedom available to the system.

So, by using statistical thermodynamics we can precisely do that, but the point to note

down here is we have been able to do it only for the ideal gases. But even then it is a



jointly forward, we started from the Hamiltonian of the system, we looked at a wide

variety of data from experiments, we understood how to separate out the contributions of

the underlying quantized degrees of freedom into separate contribution, and calculate the

thermodynamics of the ideal gas in this case. In next lectures, we will have a closer look

at the different quantities, their relative magnitudes, and whether the structure is going to

be important in controlling the overall thermodynamic property of the system.

Thank you.


