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 Ideal Gas

Welcome back. So, today we are going to start the second part of our course, where we

are going to use the language that we have developed so far in this course into explaining

the  properties  of  some very  simple  systems.  And  today, the  topic  of  our  lecture  is,

statistical thermodynamics of ideal gases.
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Of course, ever since you started studying science, you have come across a large number

of chapters dedicated to the ideal gases. The very first law that you would have studied in

your school days is the ideal gas law. So, what is the ideal gas law? If you take a wide

Range  of  gases  and you make  a  measurement  on  their  pressure,  volume at  a  given

temperature or volume and temperature at  a given pressure and so on. You can play

around with it.  Then a functional  relationship can be return down that says, that  the

pressure of a gas is proportional to the temperature of the gas and inversely proportional

to the volume of the gas under the given experimental conditions. So, this is what is

known as the ideal gas law.



Now, in  the  ideal  gas  law then,  p  represents  the  pressure,  V represents  the  volume

occupied by the gas and T is the temperature at which the gas has been kept. So, p V

divided by T is equal to N into k B. Now, what is capital N? Capital N is the number of

the gas particles present in the system. So, in a macroscopic system it is typically one

Avogadro number. So, that is 1 mole. Now, k B is a universal constant and here we are

probably more familiar  with the use of the universal gas constant  where the small  n

represents the number of moles.

So, the small  n into capital  R that is the universal  gas constant  is  nothing but in an

alternative  representation,  if  I  am using  the  number  of  gas  particles  rather  than  the

number of moles then the universal gas constant is written in terms of the Boltzmann

constant. So, once again this is also a universal constant, but now it is not per mole, but it

is per molecule or per particle, that is constituting the gas that you are interested in. 

The other very well-known result that we have come across is the equipartition theorem.

You must have studied equipartition theorem when you studied the kinetic theory of ideal

gases and it basically says that the internal energy of an ideal gas, that is a function of

temperature  and  temperature  only.  Now,  please  remember  that  in  this  particular

discussion we are restricting ourselves to a constant value of n. Therefore, we have close

systems and in all the observations I have shown here n is a constant.

So, as you see that in both these expressions what I have is p V by T is a constant in a

closed system, similarly you for a close system depends only on temperature at which the

gas is present. The there are other several other observations I would like to highlight one

more of them which is rightly known as Daltons law of partial pressure. Now while these

2 are applicable to a single component system having only one type of gas particles

present in the system this is applicable to a mixture of let us say capital M different types

of gases each of which is maintained under the same condition of temperature and total

pressure p. Then the Daltons law of partial pressure says that if small pi is the partial

pressure of the ith component in this mixture, in this gaseous mixture, in that case if I

add up all these partial pressures I will get back the total pressure p. 

So, the aim of today’s lecture is keeping ourselves focused on a one component ideal gas.

And  try  to  understand  if  starting  from  a  microscopic  model;  if  I  can  derive  this

experimental observation of ideal gas law or the result that we have arrived at from the



kinetic  theory  of  gases.  So,  let  us  go  ahead  and  try  and  understand  how to  do  the

statistical thermodynamics of an ideal gas system.
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So, the moment I say I am doing statistical thermodynamics, you understand that I will

have to first express; what is a thermodynamic state of the system, if the system is in

equilibrium. So, here is a picture that you can see that I am having the system which is

shown in this yellow box this is surrounded by black wall on 3 sides which is rigid in

permeable and insulated, but on one side of the wall it still rigid and impermeable, but I

have made it diathermal so that when pleased in contact with the thermostat this blue

region is  the thermostat  then  the system can exchange thermal  energy and attain  an

equilibrium which is the thermal equilibrium with respect to the thermostat.

In this case the equilibrium state of the system we have already discussed at length is

going to be given by specifying the value of temperature at which the equilibrium has

been established, the volume of this enclosing box in which my system is contained and

the number of particles that are present in this system which cannot escape from the

yellow region shown. Now, this  is at  the microscopic level  and what happens to the

microscopic level? So, in statistical thermodynamics, the other range length scale that we

are  talking  about  is  a  microscopic  length  scale  where  the  language  that  we  use  to

describe the microscopic state is quantum mechanics.
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So, if I look at the system now and zoom on what I have here in this within this box, if I

can see the constituent particles they may be atoms or molecules, but to start with for the

simplest case, we are going to talk about an monatomic ideal gas. So, these are one atom

that are present at the microscopic level of this system. These atoms are constrained to

move within this volume V they cannot escape from within this box to the outside. And

when  I  want  to  study the  microscopic  model,  I  am going  to  solve  the  Schrodinger

equation and I have already discussed that the Schrodinger equation while solving the

Schrodinger equation you assume that it is an isolated system. 

So, the total energy is constant. So, the microscopic model that I am going to use here is

applicable when these particles are contend within a constant volume and their numbers

do not vary and their total energy is a given constant. If I do that, then I can very easily

say, that there are certain things that I must understand that this system is made up of

capital  N atoms in this picture 1,  2,  3 ,4 ,5,  6,  N is equal to 6, but are these atoms

different from each other? The answer is no. 

The answer is no that is because if you take one mole of say organ gas is there any way

you can distinguish atom1 from atom2; obviously, all of them are identical. So, we are

dealing with capital N identical particles at the microscopic level. And now since it is a

ideal gas I would say that this particle does not know that this other particle exists and as



a result, I would say that I have capital N atoms and these atoms are indistinguishable

and they are non-interacting.

So, when I set up this problem like this. Then the next question that I ask is, in order to

be able to use the formulation of quantum mechanics, I must be able to write down the

Hamiltonian operator of this system. So, the Hamiltonian operator in this particular case

happens to be given by an expression like this. Here, I have used this notation for the

Hamiltonian operator for this entire system that is made up of capital N atoms. 

Now simply because all these atoms are non-interacting therefore, I can very easily say

that this total Hamiltonian is now a sum of the Hamiltonians corresponding to each of the

non-interacting particles present in the system. If they were interacting I would have

some terms or some operators corresponding to the interaction between the ith and jth

particle, but here there is no inter particle interaction or no inter atomic interaction. 
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 As a result, for example if I have atom 1, atom 2 and atom 3 which means if I had

capital N is equal to 3, their total Hamiltonian of the system would have written as small

h1 cap plus small h2 cap plus small h3 cap.

So, this is the single particle Hamiltonian for the first atom, this is the single particle

Hamiltonian for the second atom and this is the single particle Hamiltonian of the third



atom. And since all of them are the same therefore, you understand that this is essentially

I am taking the same Hamiltonian 3 times. 

Now, in order to understand what this small h is for a given atom then this particular I

should be able to say that this h operating on the single atom refunction will give me

energy of the single atom as the energy Eigen value multiplied by the refunction. As a

result,  and  this  would  be  mean  that  having  these  separable  terms  in  the  original

Hamiltonian which operates on the total refunction of the system and this should give me

E total as a energy Eigen state multiplied by the total refunction. 

Now, this is true. I know that this can be written as a sum of these 3 individual operators

and therefore, I must have the 2 following solutions I must be having that for a given

total energy of the system that must be equal to E1 plus E2 plus E3.

Whether it is responds to one of the energy Eigen states of particle1 or atom1. This is an

another energy Eigen state of atom 2 and this the energy Eigen state of atom 3. And

obviously, you understand that this solution is possible if I can write that psi this is psi1,

psi2 and psi3 maybe I will use some kind of different notation for the different way

functions. So, these are the single particle way functions psi1 prime, psi2 prime, psi3

prime correspond to the single particle way function which is obtained as a solution of

this single particle Schrodinger equation. 

Once  you  are  able  to  write  this  therefore,  I  can  always  go  back  and  say  that  in

consequence to having these non-interacting particles I must be I must have this kind of

simplification that the total energy of the system for an N particle system is actually, the

sum  of  all  the  individual  energy  Eigen  values.  So,  this  has  actually  a  very  big

consequence. So, let us say that I have these single particle equations and then they give

me energy value E alpha for each particle, right? 

So, alpha can be the 1, 2, 3 and so on and so forth. So, the different microscopic states

are generated by these notations this indices alpha. So, E alpha 1 would correspond to the

alpha th energy Eigen state, energy Eigen value for atom 1. Then for atom 1 if I want to

write down the single particle partition function then it turns out to be q1 and that is

given by summation over all possible values of alpha e to the power of minus beta E

alpha 1. 



So, what is this 1 corresponding to this corresponds to the atom number, right? So, this is

my atom number and when I write this I am writing down the different possible solutions

of the Schrodinger equation for this atom 1 and E alpha is the alpha th energy I can value

for this atom 1.

So, in general if I do not use any index for the particle
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I can write down that for a single particle system the canonical partition function is going

to be summation over alpha e to the power of minus beta E alpha. Now what I have here

is capital Q. Now capital Q is the total partition function for this capital N particle system

which are not interacting with each other and therefore, if they are distinguishable I will

write that capital Q is equal to small q to the power of N. 

We  have  already  discussed  this,  but  in  addition  to  this,  I  have  all  these  atoms

indistinguishable and therefore, if I go on counting the same thing again and again, I will

be having over counting problem. So, how did we overcome this over counting problem?

If  you had capital  N indistinguishable  particles,  then while  writing  it  down one can

divide the small q to the power of N by N factorial. Now this was the prescription of the

famous scientist Gibbs and we will see if I do not use this factor I will not be able to

reproduce the fundamental property of in shop b like it is extensivity property.



So, I will start with this expression that I have now system made up of N non-interacting

and indistinguishable atoms, where the total Hamiltonian of the system can be summed

over all the individual identical contributions coming from each of the atoms. So, that the

energy is  now a sum over all  the individual  energies and of the atoms and the total

partition function is given by the single particle partition function raise to the power of N

divided by capital N factorial. Now once we know this, then let us focus on the single

particle partition function small q.

Now, as I said for a given atom, if I want to find out small q
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I will have to estimate this quantity that is my small q, if I know small q and for a given

N,  I  can  find  out  capital  Q.  If  I  can  find  out  capital  Q,  I  can  find  out  all  the

thermodynamic quantities by knowing that F is equal to minus k BT l n Q, and from here

I can find out all  other thermodynamic quantities  and therefore,  I am going to know

focus on evaluation of the small q for the model that we have proposed here and in that

model the first thing that I tried to understand is what these microscopic states are. Now

for  every  for  a  given  atom,  each microscopic  state  is  quantized  in  terms  of  several

degrees of freedom.

So, in the case of an atom what are the different degrees of freedom that I should take

care  to  describe  the  microscopic  system?  The  first  one  you  should  talk  about  is  a

translational degree of freedom, the atom itself is a small ball like this which can move



about in the box in which the gas is a confined so it has translational motion, right? Now

in the next face part, I should understand that this atom is a quantum particle and it has

electronic as well as nuclear degrees of freedom and therefore,  a summation over all

possible microscopic states means that I  should take into account the quantisation in

terms of the translational degree of freedom, all the microscopic states that are being

generated  by quantization  of the translational  degree of freedom, all  the microscopic

states  generated  by the  electronic  degrees  of  freedom,  as  well  as  nuclear  degrees  of

freedom. 

So, this means that I am now going to have to think about this entire problem in terms of

2 different perspectives; one is you have this entire box where you are looking at the

translational motion of this particle.

So, that is the part which talks about the translational motion. It does not talk about if

there is any structure or microscopic structure associated with this green particle, but as

quantum  mechanics  tells  us  the  atom  has  a  specific  structure,  specific  microscopic

structure and what is that structure? So, instead of this entire box, if we zoom into the

atom itself what do we see? What we see is there is a nucleus at the center and there is a

an electronic cloud around it. 

So, that is the well-established kind of picture that we have regarding the microscopic

structure of an atom. So, the question is, is it  possible to describe these microscopic

states not only in terms of a particle moving or translating throughout the box as a whole,

but also in terms of the underlined microscopic structure of the particle itself being an

atom i am talking about the contribution of the atomic structure to the single particle

partition function.
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So, let us start by understanding that the translational Hamiltonian is separable from the

electronic  and  nuclear  Hamiltonians  and  similarly  the  electronic  and  nuclear

Hamiltonians are separable from each other and this is possible, if the energy scales of

each of the degrees of freedom and the times scales when we in which this changes along

this degrees of freedom are widely different from each other. 

An of course, that is what is a good of very good approximation for one single atom

moving about in a huge box So, we are going to assume the seperability of translational

motion  from the electronic  or  nuclear  degrees  of  freedom and we are  also going to

understand that the since electrons move at a time skill much smaller than the nuclear

motion, then for all practical purposes i can assume the nucleus to be essentially fixed in

one of it is nuclear energy states while the electron moves about it.

So, what is the consequences of this kind of approximation? The consequences is that we

can know go back and write that even the single particle Hamiltonian operator can be

separated into 3 independent contributions.
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The first one is the operator corresponding to the translational degree of freedom. So,

and this is the operator contributing to the electronic degree of freedom and this is the

operator  contributing  to  the  nuclear  degree  of  freedom.  If  that  happens  then,  we

understand the consequence will be that at the level of the single particle partition

Function, this term will contribute to q Trans, this term will contribute to q electronic and

the nuclear the existence of the independent nuclear term in the Hamiltonian operator for

each particle will contribute this q nuclear. So, if that has happened then we understand

that at present evaluation of this small q requires us to model q small q trans, small q

electronics as well as small q nuclear.
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Now, in order to evaluate them each of these partition functions i am going to use some

of the results that we have already developed in the course that we have here. So, the first

part that we are being looking for is the translational partition function. Now how do I

find this out? So, once again look at the degree at the degree of freedom we are come

focusing on. It is the motion of this particle in a 3-dimensional box and you have already

seen how to solve the Schrodinger equation for a particle in a 3-dimensional box. 

Let me choose the volume of the box as a cubed so, it is a cubic box and i know the

solution of the Schrodinger equation which is given in terms of 3 quantum numbers n x,

n y and n z and here m is  the mass of this  particle  and a is  the dimension in each

direction of the box. So, the different energy states of this atom will be generated by this

number n which is nothing but combinations of these stray quantum numbers n x, n y

and n z each of which can vary from 1 to infinity. So, we have already seen that for a 1-

dimensional box if I have a particle in a 1-dimensional box.
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Then E n is given by h square by 8 m a square into n square. In that case small q is given

by summation over n going from 1 to infinity into the power of minus beta n square h

square divided by 8 m a square.

Now, this is for a particle in a one-dimensional box. Now I have 3 dimensional boxes,

but  please  remember  in  this  3-dimensional  box  the  x,  y  and  the  z  directions  are

independent of each other, and therefore i would say that well my E n is nothing but h

square by 8 m a square into n x square plus n y square plus n z square. So, by definition

small q now can be written as n x going from 1 to infinity e the power of minus beta n

square h square by this pre-factor by this n x square similarly, same thing for the n y term

for the y direction. 

So, beta h square by 8 m a square and then n y square multiplied by summation over n z

equal to 1 to infinity e to the power of minus beta h square this quantity now what is the

difference between this term this term and this term? All of them are the same apart from

the dummy index n x, n y and n z therefore, i can very easily write that this q trans is

going to be something like small q to the power of summation over n going from 1 to

infinity e to the power of minus beta h square divided by 8 m a multiplied by n square,

this summation multiplied with each other and therefore there is a cubic term. 

And we have already seen how to evaluate  this  single particle  partition function and

therefore, we know the q trans as a function of volume which is a cubed and also in



terms of this lambda cubed. And do you know what lambda is this depends on the mass

of the particle, it depends on the temperature at which the system is present. So, we will

continue our discussion next with the determination of q electronic and q nuclear I will

see how to get the total partition function of the system.


