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Welcome back. So, in this lecture, we are going to discuss the third part of canonical

ensembles,  where we have already seen that  under  a  given condition  of temperature

volume  and  number  of  particles,  if  I  know  the  partition  function,  I  can  get  the

thermodynamic properties, where the relationships are given are listed over here.

(Refer Slide Time: 00:42)

The Helmholtz free energy of average energy, or the internal energy entropy pressure,

and even chemical potential. So, all these require the partition function Qas a function of

temperature volume and the number of particles and; obviously, you understand that for

a given system capital Q that is equal to summation over all possible microscopic states e

to the power of minus beta E i, where E i characterizes the i th microscopic state as given

by the solution of the Schrodinger equation.
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So,  therefore,  the aim of  this  particular  lecture  is  to  evaluate  the  canonical  partition

function of a given system for which the solution of the Schrodinger equation is known.

(Refer Slide Time: 01:44)

So,  we  are  going  to  start  by  calculating  the  canonical  partition  function for  single

particles,  we  have  already  seen  a  lot  of  single  particle  systems  for  which  we  have

discussed in detail the solution of the Schrodinger equation, and how to count them when

they are present under the isolated condition, now we are going to use those concepts

once again in this particular course. 
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So, the first application that I have in mind is a single spin half particle, and in this case

unlike the isolated system, I have the system which is immersed in a thermal reservoir,

and here for the sake of simplicity I have a single particle, and this single particle in my

first example corresponds to a spin half particle, I assume that that is embedded inside

the system some magnetic field H therefore, if the magnetic moment associated with the

spin half is mu,, in that case I know that from the solution of Schrodinger equation for

the isolated system the allowed energy Eigen states for this spin half particle is going to

be the first one the spin up microstate having an energy minus mu H, and the second one

which is plus mu H energy having a spin down; that means, the spin is oriented anti

parallel to the direction of the applied field. 

So, how many microstates are there, under isolated condition there are basically 2 such

microscopic states, now when you take any such system and put it in contact with a

thermal reservoir, now we are asking the question are they equally probable, because of

the presence of a finite temperature you are no longer in the temperature less description

of the Schrodinger equation and therefore, the 2 possible microstates are going to be

differently populated under the condition of finite temperature, and then correspondingly

we will say well,  since it  is a single particle  system I am going to use small q as a

representation of the canonical partition function for the single particle, and this is going

to be by definition once again summation over I e to the power of minus beta E i now

how many microstates are possible for this system 2. 



So, I will say this is i equal to 1 to 2, and accordingly I will write in this summation in

the expanded form and say that this is equal to e to the power of minus beta e 1 into e to

the power of minus beta e 2, I know for this given system what e 1 is this quantity is

minus mu H, and this quantity is plus mu H therefore, I can very easily write down that

small q is equal to e to the power of minus beta mu H plus e to the power of this one is

plus beta mu H, and this is going to be minus beta mu h. As discussed in the last class I

am using  this  particular  notation  that  beta  is  equal  to  1  by  the  Boltzmann  constant

multiplied by the temperature in the absolute scale.

Now, once you know this small q, I can very easily answer questions like what is the

probability that this single particle in this system has an up spin then; obviously, the

answer is e to the power of up spin, which means that is the first energy state that I am

talking about. So, that is minus beta of e 1 divided by q, by definition p I is e to the

power of minus beta E i by q. So, here my up spin corresponds to the index 1 here, and

therefore, I am writing it like this. So, writing it explicitly then I have this is equal to e to

the power of beta mu H, divided by e to the power of beta mu H plus e to the power of

minus beta mu H clear. So, that is a result that we have put up here. So, this is actually

trivial I would say and this can be extended very easily to the general scenario of a 2-

state particle.
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Where instead of having minus mu H and plus mu H, I would say that my system is

comprised of a single particle for which the energy state diagram from the solution of the

Schrodinger  equation  is  like  this.  So,  once  again  how  many  microscopic  states  are

possible  for  this  system,  the  Schrodinger  equation  solution  tells  you  that  only  2

microstates are possible, and what are these energy values or energy Eigen values for

these 2 states? 
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One is e 1 equal to 0 the other one is e 2 is equal to epsilon. So, once again if I write

down the single particle partition function for this system I will say that this is equal to I

equal to 1 to 2 e to the power of minus beta E I. So, as before I am going to write it as e

to the power of minus beta e 1 plus e to the power of minus beta e 2 now I put the values

of e 1 and e 2. So, e to the power of minus beta epsilon. So, what is the final form of q

the final form of q is 1 plus e to the power of minus beta epsilon. So, this is basically a

generalization of what I had from the [vocalize-noise] spin half particle system. So, here

as  you see that  I  have 2 distinct  microscopic  states,  and the corresponding partition

function for the single particle is this. 

So, if I ask you the question what is the probability that this particular microscopic state

will be observed, that probability corresponds to my energy e 1 equal to 0 therefore, the

probability of observing the system in the lower energy state which has an index 1, that

is equal to e to the power of minus beta e 1 by q now what is e 1 that is 0. So, this term



becomes 1 and I have 1 plus e to the power of minus beta epsilon, similarly if I want to

know what is the probability of observing the system in this particular micro state, that is

where the system is present in the upper energy state in that case, I would immediately

say that the probability is e to the power of minus beta epsilon divided by 1 plus e to the

power of minus beta epsilon. 

This is a repetition from the last lecture, but I thought I will highlight it once more before

we take up other examples, but there is one more example that we have talked about in

the last class.
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And that is the simple harmonic oscillator where unlike the first 2 examples I have an

infinite number of solutions of the Schrodinger equation possible, and in the with a given

angular frequency of the oscillator. So, in this case when I write down the energy states I

write it down in terms of a quantum number that varies from 0 or 1 2 etcetera. So, it can

take up integral values and there are infinite number of possibilities, for a given value of

this quantum number v, you can find out the associated energy value of this energy state

and that is  v plus half  H cross omega where omega is  the angular  frequency of the

oscillator and therefore, once again since the basic definition of small q is summation

over all possible microstates e to the power of minus beta E I. 

So, in the case of simple harmonic oscillators, each microstate is characterized by this

one quantum number v and therefore, here summation over all microstates as I write as I



always  right  here,  is  actually  a  summation  over  all  possible  values  of  the  quantum

number v. So, following this principle we have shown you how to derive this how to

evaluate  this  infinite  summation,  and  we  find  that  there  is  a  very  nice  analytical

expression as shown over here.

(Refer Slide Time: 11:09)

Now, in today’s class what I am going to do is, I am going to talk about a particle in a 1-

dimensional box in thermal equilibrium at a temperature t.

(Refer Slide Time: 11:11)

Now once again this is the picture that I have in mind.
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So, I have a 3-dimensional box. So, I will consider only one direction in it. So, that the

particle is moving in this direction which is probably the x direction, and it moves it has

to  confine  itself  between  0  and  a,  there  is  only  one  such  particle,  and  this  box  or

whatever  this  direction  is  this  is  in  equilibrium with  the  thermostat  maintained  at  a

temperature t. So, I have n equal to 1, instead a volume since I have a single dimension

therefore, I have a length that is equal to a within which the particle is confined, and the

other thing that I require to define the microstate of the system that is the temperature t.

Now, the question is how shall I obtain the a  canonical partition function for a particle

like this. So, let us remind ourselves; what is the solution that we know from the solution

of Schrodinger equation for any such system we know that once again all the microstates

are can be described in terms of a single quantum number which is n. So, what are the

possible  values  of  n  n  must  be  an  integer  varying  from  1  to  infinity,  and  the

corresponding  energy  values  are  given  by  n  square  multiplied  by  something  which

depends on the Planck’s constant mass of the particle, and the length a over which it is

confined. 

So, it is possible to use this relationship and evaluate the small q for this system. So,

small q now just as before would require a summation of this particular term, exponential

of  minus  beta  into  energy values  over  all  possible  microstates,  here  each  and every

microstate is characterized by the quantum number n therefore, a summation over all



microstates translates to the summation over all possible values of n, now n starts from 1

and goes to infinity right and therefore, I would say that in order to be able to evaluate

this q, we need to evaluate this particular expression in keeping with the known solution

of Schrodinger equation for a particle confined in a 1 dimensional box.

Now, but it should be easy to do once again we are having this problem of evaluating an

infinite  series summation,  but unlike the previous case of simple harmonic oscillator,

what we find is here the summation is not. So, easy and why do I say. So, that is because

let us say that I am going to calculate a sum evaluate this sum by hand, can I do it, I

mean infinity is a very large number. So, it is not possible to do this summation by hand,

you might argue that I can use a computer to do this summation. So, even in that case

you will have to specify the maximum value of n up to which you are going to add to this

evaluation of q, now my small q is a number like say summation over n going from 1 to

some n max say for the purpose of my actual summation of this, e to the power of minus

beta E n, now if I do this summation then I will have e to the power minus beta e 1 plus e

to the power of minus beta e 2 and so on and so forth. 

Let us say that I will go up to e to the power minus beta E n max if that is. So, then there

will be other terms as well which will correspond to the value of n greater than n max

something like n max plus 1, now if it so, happens that I can truncate it at this position

and ignore any of these terms which are present,  that will give me a rather accurate

evaluation numerical evaluation of this summation, and thereby give me an estimate of

accurate estimate of small q. So, the question that I have here is E n max beta E n max

when it is exponentiated like this, this number must be much, much less than 1. So, that

whatever other terms are there in this particular summation they are going to be very,

very insignificant, I mean n max or n max plus 1, this kind of relationship is going to be

very, very small or in other words I must be having beta E n max must be much, much

greater than 1, actually if you look at what are the possible values for example, say beta

corresponding to a temperature of 300 Kelvin, and mass is about 50 a m u, and if your a

is roughly a cube is roughly about 22 litres, what you will find that this n max value is

going to be roughly of the order of 10 to the power of 20. 

So, of course, then there is a very large number of terms that I need to find out I need to

add in order to be able to evaluate this infinite series summation, of course, I am not



going to do it we  the scientists are very smart people. So, they formed out alternative

ways of evaluating this sum and that is as follows. 
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So, what they did was, they understood that this series summation can be replaced by a

by an integral. 

(Refer Slide Time: 18:10)

Now when you do this you understand that you are dealing with a situation where you

are plotting say x along this direction, and f x along the y direction, and let us say that

this is how f x varies as a function of x, now what we are trying to say is x varies from



some initial value 0 to some final value here that is say x T right. So, basically what we

are looking for here is the we have discretisized the x direction into a few different  a

values like x 1, x 2, x 3 and so on. And so, forth, and what we can do is we can find out

the  corresponding  values  of  f  x  at  these  points,  now  why  is  this  discretisization

important, this discretisization is important because if you find out the values of these

rectangles areas of these rectangles from here in this figure, then that is going to give you

a rough approximate value of the area under this curve. 

So, and that is exactly what we would look for, but this depends very, very much upon

the interval, that you have chosen over here and this interval is something that decides

whether the sum of the areas under this rectangle are going to be accurate enough to

represent the integral, and we already know that yes this is true if and only if this interval

is very, very small, now if you go back and look at like the typical values that we are

thinking of here, we are finding that I am going to look for d n e to the power of minus

beta n square H square divided by 8 m a square right,  I am going to evaluate this. So,

which one is my f x or my f n here that is equal to e to the power of minus beta n square

H square divided by 8 m a square, now so, in this particular case the n appears with all

these numbers and if you go from n to n plus 1, the delta; that means, the change in the

values of n the corresponding functional change that is of the order of 10 to the power 10

minus 10.

So, which means that I can indeed replace the summation that I have written here, in

terms of this integral, and it is possible to evaluate this integral and, do you know how to

do this? I will quickly have a look at how to do this integral and the result is something

that  I  am going to show you first,  and the result  is  something like this.  So,  what  is

lambda t? Lambda T is a is a quantity which we will see that it is very important as far as

describing the temperature dependent properties are concerned, and this is known as the

de Broglie wavelength and it has the dimensions of length.
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Now, going back let us now try to do this particular integration. So, q is equal to 0 to

infinity d d n e to the power of minus beta H square divided by 8  m  a square into n

square, now what I am going to do is let me use the following notation, let alpha be equal

to beta H square divided by  8  m a square,  then this  integration now looks like  0  to

infinity d n e to the power of minus alpha n square, I need to find out the value of this

integral in order to do. So, let me do further assumption let me say that y is equal to e to

the power of minus, y is equal to alpha n square right. So, what is n square n square is

equal to. So, what is n square? N square is equal to y by alpha right, there and now since

I know y I can find out what d y is, d y would be alpha into 2 n into d n, now I am going

to replace finish doing this change in variable and say that then d n is equal to 1 by 2

alpha into 1 by n into d y, now what is n n square is equal to y by alpha therefore, n is

equal to alpha to the power of minus half into, into y to the power of half now I put

everything together. So, what I get is d n is equal to 1 by 2 alpha then in place of n I am

putting in alpha to the power of minus half, into y to the power of half into d y, a little bit

more of algebra and then what I find is that I have here half, alpha to the power of half, y

to the power of half into d y, now I am going to use these new variables in order to find

what small q is, now when n is equal to 0, what is y? Y is equal to 0. 

So, the this is a lower limit replacement, when n is equal to infinity once again alpha is a

finite quantity is non0, as a result this stays as infinity instead of d n I am going to write

it as 1 by 2 root alpha into y to the power of minus half d y, and I am going to do the



replacement here and this is equal to minus y. So, this now turns out to be 1 by 2 into

root alpha into integral 0 to infinity d y,  y  to the power of half minus 1 into e to the

power of minus y by now you must have learnt in your maths courses that this is nothing

but 1 by 2 root alpha into gamma half right.
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So, my small q now turns out to be 1 by 2 into root alpha into gamma half, do you know

what the value of gamma half is? Yes, the value of gamma half is root pi. So, what I have

here is pi divided by 4 alpha to the power of half, now I do not know the definition of

alpha and that is equal to, H square divided by 8 m 8 sorry 8 m a square into k b t, I put it

back over here what do I get I get this is pi divided by 4 into H square into 8 m a square

k b T to the power of half. So, the final expression that I get is 2 pi m k T by H square to

the power of half, and I have taken the a outside, now this is a quantity that I am going to

use and you can very easily confirm that it has a dimension of length, and I am going to

inverse of length and I am going to define lambda as lambda square as H square divided

by 2 pi m k t. So, what is the final expression for q, that is equal to a divided by lambda,

now have a look at the definition of lambda.

Lambda is a function of temperature.  So, where does the thermodynamic information

enter over here, it enters here in terms of the temperature, the and does it depend on the

volume no and therefore,  I  would say that  lambda  is  a  function  of  temperature  and

temperature only, it does have a dependence on the system property, can you identify



which system property, it  is depending on yes it depends on the mass of the particle

which  constitutes  the  system.  So,  lambda  this  is  known  as  the  Brawley  thermal

wavelength,  that  is  giving  us  the  temperature  dependence  explicitly  the  temperature

dependence of the single particle partition function in this treatment and that is exactly

what we have shown here.

Now, what happens if I have this single particle, but it is not present in a 1-dimensional

box, but it is present in a 3-dimensional box? 
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So, in that case we would use the same type of argument because I would say that now

each energy level is identified in terms of 3 quantum numbers n x, n y, n z, and these

values are H square by 8 m a square into n x square plus n y square plus n z, square right

and therefore, I would say that this is nothing but E n x plus, E n y plus, E n z,  that is

because whatever happens in the 3 orthogonal directions, they give you 3 independent

degrees of freedom, and therefore, I can write the total energy Eigen state in terms of 3

independent contributions. 

So, what is small q now small q is summation over all possible energy Eigen states, into

e to the power of minus beta E I, now this can be written very easily as summation over

all possible values of n x e to the power of minus beta E n x, similarly this is n y into e to

the power of minus beta E n y, and the summation also goes over n z giving you e to the

power  of  minus  beta  n  z,  as  you see  these  are  dummy indices  right  all  of  these  3



summations are the same.  So,  I can very easily write that essentially what I have is, I

need value of this  summation e to  the power minus beta E n whole cube,  the same

summation being assumed 3 times in multiplication with each other.
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Now do you know the value of this summation yes we did that for a 1 dimensional box

right now and therefore, what I will have for a particle in a 3 dimensional box, is this that

small q is going to be equal to a by lambda for the x direction, a by lambda for the y

direction, and a  by lambda for the z direction, or in other words I can write it as v by

lambda cubed where I have assumed that I have a cubic box, such that v is equal to a

cube and by definition lambda square is equal to H square divided by 2 pi m k t.
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So, in the last class, I have talked to you about how to write down the canonical partition

function for capital, and distinguishable non-interacting particles as capital Q is equal to

small  q  to  the  power  of  n.  So,  there  you  had  n  1  dimensional  systems  that  are

independent of each other and today I have shown you 3 independent degrees of freedom

associated with 1 particle. So, once again what I found that for every independent degree

of freedom you have 1 small q contributing to the overall capital Q now we are going to

use this ideas, and look at the application of whatever language that you have developed

over here, and start talking about systems that we see every day. So, from the next class

onwards we are going to see the, application of the introductory concepts of molecular

thermodynamics that we have developed here.

Thank you.


