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Canonical Ensemble Part II

Welcome back, we will continue our discussion on the canonical ensembles today by

considering the three important relationships.
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That we have already discussed about today I am going to first look at the importance of

this particular relationship, and show you that once you have a model you will be able to

find out the partition function Q from there calculate the Helmholtz free energy F, and do

what  calculate  whatever  thermodynamic  quantity  you  would  like  starting  from  a

microscopic model. In the second part of this lecture we will look at the properties of this

probability P i and the practical significance that this relationship has. So, first let us

have a look at how to model the thermodynamics of a system starting from the partition

function.
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So, this is the relationship that we already know from the derivation, that I present it in

the  earlier  lecture.  So,  we  know that  the  Helmholtz  free  energy, which  is  a  natural

variable  of the parameters  T, V and N that is  related to the natural logarithm of the

partition  function  capital  Q,  and  here  this  capital  Q  contains  all  the  informations

regarding the microscopic states of the system.

Now, let us think about another thermodynamic property like the internal energy. Now if

I want to find out the internal energy, I have made it very clear by now that the internal

energy is nothing, but the average energy in this canonical ensemble. So, how do I find

out the average energy? 
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Of course, by definition this average energy is given by summation over i E i P i right.

So, E i for the i-th microscopic state E i is a solution of the Schrodinger equation. So, this

is the i-th energy eigen state, and P i is the probability that the system resides in this i-th

microscopic  state,  under the given condition  of  temperature,  volume,  and number of

particles. 

Now if I write down explicitly  what P i  is  I  can very easily show that  this  must be

something like E i e to the power of minus beta E i by definition of P i. So, this is my e

bar. Now is it possible to simplify this expression to a more useable form for that, what I

am going to do is, I am going to write down the definition of Q. So, by the definition of

Q I have to sum over all possible values of i of this exponential function, what I do next

please remember that Q is a function of T, V and N therefore, or I can take a derivative of

Q with respect to either T or V or N. 

What I decide to do here, is I am going to take a derivative of Q with respect to beta

keeping V and N constant. Now very simple mathematical treatment tells you that you

can do this derivative within the summation, and what you will be left with is on the

right hand side that is E i e to the power of minus beta E i. Now i divide both sides with

respect to capital Q giving me this as minus 1 by Q summation over i E i e to the power

of  minus  beta  E  I,  now  does  this  look  familiar  of  course,  this  is  nothing,  but  this

expression that I have written down here, and therefore I should be able to say that E bar



is  equal  to  minus  1  by  Q  del  Q del  beta  keeping  volume  and  number  of  particles

constant, but as you see that this can be further simplified I can very easily write down

that E bar is equal to minus del l n Q del beta keeping V and N constant. Now somebody

may argue that  well  the actually  we would like to see the derivative with respect to

temperature rather than beta. 

So, that is pretty simple once again, what we can do is we start from the definition of

beta, beta is equal to 1 by k T therefore, what is d beta d T it is a function of temperature

k B being a universal constant that is 1 by k B T square. Now can I write down what E

bar is in terms of taking a derivative with respect to temperature, I know that E bar is del

l n Q del beta keeping V and N constant. 

And this I am going to write as del l n Q del t keeping V and N constant into dT d beta

therefore, if I just check this expression and this expression, and combine them what do I

get, I get E bar that is equal to k B T square del l n Q del T, V N. So, this is trivial algebra

and one can have a look at the expression for internal energy, that I have put in over here,

and that is nothing, but k B T square into del l n Q del T keeping volume and number of

particles constant. 

Now once you have the Helmholtz free energy, and the internal energy in that case it is

very easy to find out what the entropy of the system is, now can you guess because that

is only be a one more algebraic step and that can be carried out as follows. So, I am

looking for an expression for entropy.
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Now, I know that F is equal to U minus T S right therefore, I can write down that T S is

equal to U minus F or S is equal to U F divided by T, I know at present U in terms of l n

Q, I know F in terms of l n Q therefore, if I plug these expressions in what should I get,

this is the expression that I am going to get can you identify the different contributions

that are coming in to this expression of course, this part comes from the Helmholtz free

energy part, and this part comes from the internal energy part. 

So,  as  you see  that  if  you have  a  model  for  which  you can  determine  the  partition

function, Q you will be able to calculate not only the Helmholtz free energy, and the

internal energy, but also the entropy of the system of course, there are other quantities

which  are  very  very  important  as  far  as  our  understanding  of  any  working

thermodynamic system is concerned.
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So, let us have a look as to how we can calculate a pressure from l n Q. So, in order to do

that you must realize that I can write down d F as minus S d T minus p d V plus mu d N

in general so, when I have a closed system d N is 0. So, this term will not be there, but if

I have an open system, where N is allowed to fluctuate the last term on the right hand

side will be present. 

So, from here I can immediately write down that del F del V, T N what is that quantity

that is equal to minus p, and del F del N, T, V that is equal to mu. So, if I now explore the

fact that F is equal to minus k B T l n Q, I note that in both the cases I am keeping

temperature constant therefore, I should be able to write that minus p is equal to del del

V of minus k B t l n Q, and this derivative is being done, under the condition of constant

temperature and number of particles. 

And therefore, i will be able to write that p is equal to k B t del l n Q del V T, N. So, that

is exactly what we have noted down here, that pressure is equal to k T multiplied by a

derivative of natural logarithm of Q with respect to volume keeping temperature and

number of particles constant.

Now, similarly it is very easy to show that the chemical potential, now is given by mu is

equal to del del N of minus k B T L n Q, but now the constancy is maintained for both

temperature and volume, under such condition I can take out the k T from the derivative



and write that this is del l n Q del N, T, V. So, even if in general it is not a closed system,

but an open 1 in that case you can find out the chemical potential starting from Q.

Now, let me take a very simple example, where I have a highly idealized system where

there is only 1 particle. 
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That is N is equal to 1 and the model the microstate of the system is given in terms of

this 2 state model. So, it has E 1 equal to 0 only 2 energy states are possible, and E 2 is

equal to epsilon, then the question is can I do, can I set up the partition function of this

system. We have already seen that by definition for this system, if it is present at a given

temperature volume with N equal to 1 where for each with this single particle, this is the

definition of the microstate, then the corresponding canonical partition function. 

This is going to be a function of temperature, and volume and this is given by 1 plus e to

the power of beta epsilon. So, if that happens then I can very easily write down, what is I

am writing this small q instead of capital Q, because I have a single particle system. Now

what is the Helmholtz free energy for this system? That is; obviously, going to be minus

k B T l n Q or F is going to be equal to minus k B T l n 1 plus e to the power of beta

epsilon. Now since I  know  things  like  l  n  q  of  course,  I  can  find  out  all  other

thermodynamic properties because that, can be obtained as a derivative with respect to

this l n q is that correct yes. Now the question is if I have a collection of N particles that

are not interacting with each other, and that distinguishable from each other, in that case



the total energy of the system will be written as say something like E 1 plus E 2 plus E 3

and so, on and so forth. So, maybe let me take a simpler system like capital N is equal to

2. 

So, I have a 2 particle system for each particle the microstate is given like this, I have

taken these 2 particles  in the set  up of a canonical  ensemble that  is  I  my system is

comprised of 2 such particles whose microstates are given by this 2 state system, this is

particle 1, and this is particle 2, they are present in a system and in equilibrium with the

thermal reservoir. 

Now my question is in this case as I as you understand that there may be many different

states for in general; so, in this case what are the different states 1 of the typical state

would be particle 1 in the lower energy state, and particle 2 also in the lower energy state

may be an so, this is the lowest energy microstate for the system . So, this way I can see

that the j-th energy state, will correspond to the say m-th energy state of particle 1, plus

m-th energy state of particle 2. 

So, what is the total partition function of the system then that is going to be summed over

all j e to the power of minus beta  E j.  Now this I am going to write down as summed

over all j e to the power of minus beta, but e j is something like this E 1 plus E n 2, which

means that instead of j i will now have to sum over m and n. So, in practice what I have

now is 2 terms e to the sum over m e to the power of minus beta E m, and summed over

n e to the power of minus beta E n right. 

This is for particle 1 and this is for particle 2, but  as I said both the particles have the

same underlying structure microscopic state and therefore, I can say that this is the single

particle partition function for this 2 states system. So, I will be able to write that capital

Q that is equal to this is small q 1 multiplied by this is corresponding to the particle 2

small q 2, but basically if they are underlying microstates are the same, and they are not

interacting with each other therefore, replacing these 1 2 things I can write down any of

these q is nothing, but 1 plus e to the power of minus beta epsilon. 

As a result 1 plus this as a result capital Q is now becoming, if I put this as small q in

general small q square. 
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So, once again let us recapitulate if I have capital N particles that are non-interacting that

are  distinguishable  otherwise  in  terms  of  the  label  that  they  carry  like  particle  1  2

etcetera,  but if their  microstate they have the same microstate does not matter which

particle, you are talking about I said that they have the same microstate like this. 

Then each of these particles is characterized by a single particle partition function which

is 1 plus e to the power of beta minus beta epsilon, and then if these are non-interacting

and therefore, I should be able to write that the net partition function for this N particle

assembly is going to be small q for the first particle, small q for the second particle, and

so on and so, forth up to the n-th particle and that must be equal to small q to the power

of n.

So,  if  I  have capital  n  non interacting  distinguishable  2 state  particles  present  under

canonical ensemble, then what is going to be the form of capital Q; capital Q, is going to

be given by 1 plus e to the power of minus beta epsilon whole to the power of N. So,

what is l n capital Q, that is going to be N l n 1 plus e to the power of minus beta epsilon

and of course, I can write down that the free energy is minus N k T l n 1 plus e to the

power of minus beta epsilon.

Now, from this result you see what we started with was very simple I had a microscopic

model of my particles, these numbers were obtained from the solution of the Schrodinger



equation for this kind of particle. And we found that there are only 2 energy Eigen states

possible 1 is 0, and other is having some energy value epsilon. 

And then we ask this question that what is the free energy of this system, the microscopic

model mind you give you a model at the microscopic level, or the atomic level, or the

molecular level. And the free energy is where you have 10 to the power of 23 particles

together for the sake of simplicity, we have assumed that they are non-interacting and as

a result you see that I have been able to obtain an usable form of expression for the

Helmholtz free energy. 

(Refer Slide Time: 21:06)

Now if  I  go  a  little  further  you  will  see  that  it  is  possible  to  talk  in  terms  of  the

thermodynamics of a simple harmonic oscillator. So, let us say that I have a volume V,

and there is a; this constant volume box it has only 1 simple harmonic oscillator in it, and

this box is surrounded by a rigid impermeable ball it is placed in contact with a thermal

reservoir  so, that it  attains thermal equilibrium with the reservoir  at  a temperature T.

Then  my question  is;  what  is  the  canonical  partition  function  for  this  single  simple

harmonic oscillator? 
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The  answer  is  q  must  be  equal  to  summation  over  all  possible  microstates  of  this

oscillator e to the power of minus beta E V. Now for a given simple harmonic oscillator

do I know what E V is the solution of Schrodinger equation tells me that, possible values

of E V are V plus half h cross omega. So, I can directly put it in there. 

So, I will say that q is equal to summation over V going from 0 to infinity because those

are the allowed values of the vibrational quantum number, then exponential V plus half h

cross omega multiplied by beta. Now I see that there are 2 portions in this within the

summation. So, 1 portion is e to the power of beta h cross omega into V another portion

is e to the power of half beta h cross omega; obviously, this term does not depend on the

summation I take it out of the summation and therefore, I find that small q is equal to e to

the power of half beta h cross omega into this infinite summation. 

And the moment you have some infinite summation you should be aware that this is

something that  you need to  evaluate  if  possible  for  this  expression  to  be practically

useful. So, in order to do that what I will do is I am going to represent this, sorry not N

this is V this number as x. So, what does this summation look like then, I have V equal to

0 to infinity x to the power of V, and this I can write down as 1 plus x plus x square plus

x cube and so on and so forth. But this infinite series does look familiar and it does have

an analytical result, and that is given by 1 by 1 minus x. So, if I put it back over here



what I find is q is equal to e to the power of half beta h cross omega divided by 1 minus

x which is this quantity e to the power of minus beta h cross omega.

So, this is what we have written down over here. So, now you see that for this system if

since I  can  evaluate  the  partition  function  it  is  very  easy  to  work  out  the

thermodynamics from here. 
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Similarly when I have capital N such simple harmonic oscillators all having the same

angular frequency; in that case if they are distinguishable and non-interacting, and if they

are present in a constant volume V at a constant temperature T, I can very easily write

down that for each of the simple harmonic oscillators, I can have an analytical expression

for the canonical partition function. And then the canonical partition function for the N

particle system is going to be given like this. Now once you know capital q you can very

easily  find  out  the  natural  logarithm  of  this  quantity  and  connected  to  the

thermodynamics. 
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So, in the next lecture we will see some of these very interesting applications, but before

I go finish this lecture, I would quickly like to highlight the other end of what of the 3

relationships that we have learnt in this class.

So, we have learnt what P i is. So, P i by definition is related to capital Q and E i where,

capital Q is the canonical partition function which you have already seen. 
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Now let me go a little further and say that did you notice that p i depends only on the

difference E i minus E naught that is simply, because we can set the 0 of energy to the



lowest energy state, and count the difference in energy from there. So, accordingly we

will see that the p of i can be written down using this kind of expression, where p i is

having functional dependence on E i minus E naught, and you are setting e not equal to 0

in your energy scale; sow, if I go a little further and try to understand the consequence of

this.
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We understand that in general from the solution of the Schrodinger equation for simple

systems, we always find that E i plus 1 is greater than or equal to E I, assuming that i is

the quantum number that we are talking about, and this would imply that E i minus e

naught will always be greater than or equal to 0.

So, this typically is the way we assign the energy states the lowest energy state E not that

is the 0 of the energy state, and as I go from E naught E 1, E 2, E 3 and so on and so

forth, the energy value E i that increases.

Now, for  the  sake  of  simplicity  let  me  assume that  this  particular  energy  level  the

difference in the energy level this gap its uniform for all the energy states, and this is

equal to k T. Once we do that it is possible for us to have a simpler expression for this

quantity E i minus E naught by k T. So, what happens if I go from i equal to 1 2 to 3, this

quantity E i minus E naught by k T that also increases as 1 2 and 3, and correspondingly

what I can say is if I look at this quantity which controls the probability P i, that now is a

number less than 1. And if it is a number less than 1, as I go from i equal to 1, to i equal



to 3,  I find that this  exponential  factor  it  goes from about 0.4 to about 0.5.  So,  this

number decreases. Now this is what has been shown pictorially over here, then this value

it increases as you go down in energy, and it decreases as you go up in energy. 
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Now the result of all these things is that, I can very easily write down that e to the power

of minus E naught by k T will always be greater than or equal to e to the power of minus

E 1 by k T and higher and higher energies, and the consequence is that if I follow the

definition of probability, then what will happen is if energy increases, in this direction the

probability of observing that particular state, or the probability of a particle of occupying

that particular state at a given temperature decreases.
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Now, so basically what we are concluding is larger the quantum numbers of the state

smaller is its population at a given temperature therefore, if you are trying to understand

that you have a very large number of particles in your system, and whether a substantial

fraction of it will be present in a microstate some kind of an alpha, all you have to do is

look at what this number is if E alpha minus E naught by k T is much less than is less

than or equal to 1, there will be a reasonable fraction of the population present in that

microstate alpha.
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So, that brings us to this very interesting concept of how you alter the population of

energy states with temperature. So, as you understand the fraction of particles in the i-th

energy state is nothing, but N i by N where N is a number of particles present in the i-th

energy state in an assembly of a total of capital N particles. And now I can write this as P

i  by P naught.  What  is  P i?  P i  is  the probability  that  the system resides  in the i-th

microscopic  state,  and  P naught  is  the  probability  that  the  system is  present  in  the

microstate having the energy E naught, and we already know that this is related to this

exponential function.

Now, as I increase temperature as you see at hundred kelvin for a simple system like this,

where the energy difference is about 0.3 electron volt initially at low temperature, the

fraction of molecules present in the higher energy state is virtually 0, but if you look at

higher temperatures you see about 3 percent of the population has been transferred to the

upper energy state. 

And this  tells  me that typically, this  is the representation of the microstate  dominant

microstate  at  low  temperature  while  this  is  the  domain  1  of  the  more  probable

microstates having a particle occupying the higher energy state, but please remembers

out of the many particles present only three percent will be going for this model to the

higher energy state. 
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 And  the  applications  of  such  very  simple  ideas  about  the  temperature  dependent

population  of  the energy states,  in  a  canonical  ensemble, and these  ideas  have  been

discussed very nicely by Horia Metiu in his book on statistical mechanics, and I would

encourage you to go back, and read a little bit like how 1 can find out the temperature of

a flame or the emissions interpret emission spectroscopy, and absorption spectroscopy as

a function of temperature or even design things like night vision glasses, which are rather

exotic, but has this principle at the at the core.

So, thank you and we will discuss the applications of whatever we have learnt in part 1

and part 2 for the canonical ensemble in the next lecture. 


