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Welcome back. Let us continue on our discussion on the basic framework of canonical

ensemble. 
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And we are discussing here, the very important relationships that we have already shown

and  that  is  the  probability  of  the  system  being  in  it  is  i-th  microstate.  How  this

probability is normalized in terms of the partition function, and the bridging relationship

that connects the information gathered from the microscopic states to a thermodynamic

function.  And  the  question  that  we  have  posed  here  is  how  do  we  derive  this

relationships, and we have I have already told you that we are going to do so, starting

from the Boltzmann hypothesis. And that is the connection between entropy of a system

to the number natural  logarithm of the number of microscopic states  possible  for an

isolated system. So, let us try and get at the derivation in this lecture.
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Now, when we talk about the probability of a system being in an energy state E i. So,

basically we are assuming in a canonical ensemble,  that if I take the system and the

reservoir together, then this composite setup is isolated. So,  under such condition it is

possible to write down these 2 expressions, if the energy of the system is E i, and the

energy of the reservoirs is E res both of them should sum up to a constant value E total

that is the total energy of this isolated setup of system and reservoir. 

Similarly at equilibrium if S is the entropy value associated with the system, and S res is

the entropy of the reservoir, then both of them should add up to give a constant value S t

for the system plus reservoir setup. So, under such condition it is possible to write down

that the probability of observing the system in it is i-th energy state E i that is given by

gamma res divided by gamma t. Now this might appear a little counterintuitive to you,

but let us take an example where we allude back to a very simple model system that we

have already seen. 
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So, I am choosing a system of 2 spin half particles that are non interacting and that are

distinguishable, and they are present in a constant volume container where there is an

embedded magnetic field H. Now I have 2 positions here position 1, and position 2 right.

So, do I know what are the different possible microscopic states of the system we have

done this before so, i find that this is a spin up in a position 1, spin up in position 2, spin

up in position 1, spin down in position 2, spin down in position 1, and spin up in position

2, and then both are down.

Now, this  is  a  complete  collection  of  microscopic  states  possible  for  this  particular

system, and then I am asking this very specific question what is the probability that my

spin 1 that is the spin half particle in position 1 will be oriented parallel to the direction

of the field. So, in this case I know that the probability of observing the event alpha is

given by n alpha divided by N. Now what is n alpha n alpha is the number of times you

encounter  the  alphath  event.  And what  is  N alpha?  N  alpha  is  the  total  number  of

possible outcomes. 

So, in this particular example what is N capital, N is equal to 2 square that is equal to 4.

Now what is N alpha, in my case N alpha let me see this microscopic state has at position

1 a spin half particle oriented parallel to the direction of the field the same here, but not

here and here. So, what is my N alpha, N alpha is equal to 2. So, what is P alpha? P alpha

is equal to 2 divided by 4 which is half. Now the question is here if I think of a little bit



differently  let  us  say that  this  first  spin is  my system of course,  this  is  a  very very

simplified idealized kind of situation, that I am talking about for the sake of simplicity.

So, my spin 1 is my system and I am asking the question that if I fix my spin 1 in the

position 1, with an orientation parallel to the direction of the applied field. So, in the

position 1 the spin can only be a spin up a configuration right. 

And then I am asking this question, then what is the probability of observing any such

configuration.  So, then what we do once again is we say let me find out what is the

direction of the field, and what are the positions that I am talking about, yes I have once

again position 1, and position 2. Now the microstates that I am interested in are where

the position 1 is occupied by a spin up spin up orientation. Now this is 1 possible thing.

So, this is my system which is fixed in this configuration. 

So, what can be the rest of the system the rest of the system there is only 1 position that

is position 2 and it can have 2 different orientations, 1 is spin up and fixing the system at

spin up, the rest of the system which in my case is a highly simplified representation of

the  reservoir,  it  can  take  up  2  different  orientations  or  configurations  therefore,  I

understand that in this particular case still capital N is 4, even if capital N is 4 the I do

not have to count all the microstates to be able to know what is N alpha. I have fixed the

orientation in position 1 that I call the system. 

And position 2 is now corresponding to my reservoir. So, what are the different ways a

different microscopic states possible for the reservoir, this is 1 possible microstate that is

another  possible  microstate.  So, what is  N alpha? N alpha equal  to 2. So,  what is P

alpha? So, once again p alpha is given by 2 by 4 that is equal to half. So, essentially what

I have done here is that, I am writing down P alpha is as the number of microstates

available to the reservoir when this event alpha happens divided by the total number of

microstates possible.

Now this is applicable for an isolated system and therefore, if I call this my system and I

call this my reservoir, then system plus reservoir must be isolated. Now look back at

what I have written down here. So, what I have written down here, is as follows I have

written down that P of E i, I have fixed my system at the energy state E I, if that is so,

then what is the energy of the reservoir E t minus E i by the constancy condition that I

have already shown here, and then this E t minus E i this value will decide the number of



microscopic states possible for the reservoir. So, that I represent here as gamma res. So,

res means the reservoir, and in our case it  is a thermal reservoir. Now i divide it by

gamma t which is a function of E t. So, what is gamma t gamma t is the total number of

microscopic states available to this totals isolated system comprised of the system as well

as the reservoir. Now if that happens then I can very quickly write this down, now do you

know where this relationship came from of course, this relationship came from the fact

that the property of entropy of the system is such that.
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The total entropy of the system, for such a composite setup fed system plus reservoir is

isolated at equilibrium always you can write down that S t is S plus S reservoir. Now

using Boltzmann hypothesis,  I  can very easily write that S t must be equal to k B ln

gamma t and S res that must be equal to k B ln gamma res and therefore, very easily i

can say that gamma res is equal to exponential S by k B, S res by k B, and similarly

gamma t is equal to exponential of S t by k B. 

Now please remember that this S res is a function of E t minus E i which is the reservoir

energy. And this S total this 1 is a function of the total energy. Now the next thing that we

do is we do a little bit of algebra we write down P of E i which is equal to gamma res by

gamma t this  can now be written as exponential  of 1 by k B into,  S res which is a

function of E t minus E i minus S t which is a function of E t clear.



So, I have been able to go from the first equation that I have written about P E i to here,

simply by the application of the Boltzmann hypothesis Now in order to find out what

then P E i is I need to understand what this S res minus S t is in order to do that, there is

something I would like to mention over here, and that is as follows first of all. 
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If the system has attained equilibrium in that case let us say that the energy total energy

of the system, now is E bar that is the internal energy of the system. If the system energy

is E bar in that case what is the energy of the reservoir E t minus E bar. So, this is the

energy of the reservoir, and I can very easily write that S t which is a function of E t that

is equal to S as a function of E bar plus S res as a function of E t minus E bar. 

Now, this is one relationship that I am going to use later to find out the difference that I

am looking for. Now please have a look at this particular quantity, S res E t minus E bar.

Now before I go into the evaluation of this term let me go back, and have a look at the

kind  of  let  me  remind  you  of  the  kind  of  system  that  we  are  looking  at,  thermal

equilibrium between the system, and the reservoir the average value of energy E bar is a

constant of time. And a magnitude of E bar minus E i is very small when the number of

particles and available energy both are very very large. I am going to use these 2 results

in the next step of my derivation.  And this  is what I say? I  am going to find out S

reservoir E t minus E i because that is exactly what you require in your calculation please

have a look back over here. So, I require to evaluate S res which is E t minus E i as a



function of E t minus E I, and it is difference with the total entropy of the system plus

reservoir which is a function of the constant total energy E t.

Now, I have this second term written down in terms of the equilibrium value of energy E

bar. So, this is the system entropy, and this is a reservoir entropy at equilibrium. So, what

is the other quantity that I need to find out? I need to find out this particular quantity in

the numerator of the exponential term, then I  need to understand what E t minus E i is

and I need to understand S res as a function of this difference.

Now, in order to understand this behaviour let me rewrite this S res term like this, S res is

equal to E t minus E bar plus E bar minus E i. So, all I have done is here, I have carried

out a change in variable.  So, that now I have this as a reference point, and this as a

variation over the reference point by the property of my system, this is the equilibrium

energy value of the reservoir. And what is this? This quantity is the deviation from the

equilibrium value. 

Now since the equilibrium is being maintained between the system and the reservoir, you

understand that this deviation must be very very small.Now let me remind you that if you

have know a function at a given point x naught say, and you want to know what that

function is at a nearby point x naught plus h where h is a very small number, then the

corresponding function you know the function f at x naught, and you would like to find

out what f x naught plus h is how do you do that, 1 can use a Taylor expansion. 

If I do it, then I can write it as f x naught plus h into f prime x naught and so on and so

forth. So, here try to understand that I am doing the same thing, I have written down as

so, x naught is my reference point, and this is my new point. So, this is the value of the

function at the reference point, and this is how I evaluate the value of the function at the

new point. Now look at the task that I have in hand let me designate as x naught E t

minus E bar. And let me designate as h E bar minus E i therefore, I have set myself the

task of finding S res x naught plus h, that is this quantity. So, what is x naught? x naught

is this equilibrium energy value and of the reservoirs, and this is the deviation from the

equilibrium energy value of the reservoir, which is very very small and therefore, I can

use the Taylor expansion once again to evaluate this quantity. So, what is this going to be

that is going to be S res at x naught plus h into del S res of course, here the derivative is



in  terms  of  E  keeping  volume,  and  number  of  particles  constant,  and  evaluated  at

equilibrium where x is equal to x naught and so on and so forth. 

Of course, I am going to replace this x naught value instead of this, I am going to write E

t minus E bar. Now what is h? h I am going to replace, and I am going to write it as E bar

minus E i. Now what is del S res del E of course, we know from our thermodynamics

that del S res del E evaluated at constant volume, and number of particles that is equal to

1 by t. So, at equilibrium condition what is this t this is the temperature of the reservoir. 
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And therefore, we can now write down the following expression for S res E t minus E i.

So, this is equal to S res E t minus E bar plus E bar minus E i, that is equal to S res E t

minus E bar plus E bar minus E i divided by T, now please look back . So, now I know S

res  in  terms  of  the  equilibrium  value  of  entropy  of  the  reservoir  plus  some  small

incremental term involving the temperature of the reservoir right. Now I know that at

equilibrium T res is equal to T the temperature of the system therefore, I am now writing

this expression as S res E t minus E i that is equal to S res E t minus E bar plus E bar

minus E i divided by T. Now I already have the expression for the total entropy of the

system which is like this, plus entropy of the system characterized by the average energy

at equilibrium. If I now subtract the second equation from the first, what do I get, I get S

res E t minus E i minus S t E t that is equal to of course, these 2 terms cancel out, and I

am getting E bar minus E i by t minus S E bar.



Now, as you see that I can divide both sides by the Boltzmann constant therefore, I will

be having S res E t minus E i minus S t E t divided by k B, that is equal to I am going to

write it in a little different fashion E bar minus T of S E bar divided by k B T minus E i

divided by k B T. Now why did I try to find out this particular term, because this is the

term which appears in the expression for a probability, let us go back and have a look at

it look at it again. So, I require this term by k B exponentiated to find out P of E 1 and

here, that is exactly what I have got here, and therefore I can now very easily write what

is P of E 1. 
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So, P of E i that is equal to exponential of E bar minus T S of E bar divided by k B T,

then exponential minus E i divided by k B T right. Now please note that I have written

down 2 types of terms in this expression for probability. So, the first term does it depend

on E i no, the second term yes, it depends on E i and also it depends on the temperature

at which the system has attained equilibrium with the thermal reservoir.

Now, let us have a look very closely at what we have got here, at equilibrium when the

system is at  equilibrium with the thermal  reservoir  E bar is nothing, but the internal

energy. So, what is E bar minus temperature into S of E bar that is nothing, but u minus

TS which is the Helmholtz free energy? So, I have here P of E i that is equal to E to the

power of beta F into E to the power of minus beta E i, where I have represented as beta 1

by k B t clear. 



Now if that happens then I would say that I have achieved a lot, I mean I have been able

to obtain an expression for the probability of the system being in it is i-th microscopic

state, but do I know if this probability is normalized of course, if it has to be normalized

in that case I must be having summation over i P of E i that is equal to 1 and therefore, I

must be having this relationship valid, that e to the power of beta F into summation over

i E to the power of minus beta E i that is equal to 1. 

Now in our previous description we denoted as a normalization constant capital Q which

is nothing, but e to the power of minus beta i beta E i summed over i and therefore, i can

write e to the power of beta F into Q inverse is equal to 1 or q is equal to e to the power

of minus beta F. So, this is exactly what we have shown here in the slides as well.

So, when we decide that E bar minus E i is a very small number, E bar is a constant of

time  and so,  is  E  t  minus  E bar  then  we have  been able  to  show, that  P of  E i  is

exponential beta F into e to the power of minus beta E i, and upon normalization i come

across this expression that Q is equal to exponential of minus beta F.

Now, can I just rewrite everything therefore, what is ln Q, ln Q is equal to minus beta fF.

Now I put back the expression for beta. So, ln Q is equal to minus 1 by k B T into F or in

other words  F  is equal to minus k B T, ln Q and this  is a relationship that we were

looking for. 
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This is the bridging relationship between the microscopic state of the system, and the

thermodynamic property as manifested through the free energy Helmholtz; free energy

which is nothing, but the thermodynamic potential of the system maintained at a constant

temperature volume and number of particles. 
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So, in conclusion in this lecture we have been able to use a very general treatment to

arrive at 3 most important relationships, in the description for canonical ensemble. And

we have  been able  to  derive  these  relations  starting  from the  Boltzmann  hypothesis

applied to an isolated setup, where the system plus reservoir are can be treated as an

isolated a set up.

So, in the next  lecture we are going to see,  how we are going to use these kind of

relationships to find out useful thermodynamic properties starting from a model of the

microscopic model of the system.

Thank you. 


