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Welcome  back.  Today  we  are  going  to  talk  about  the  last  part  of  the  language  of

molecular thermodynamics. And today we are talking about the canonical ensembles. So,

let  us try and see what these 2 terms mean first,  ensembles.  So,  when we talk about

ensembles,  we  are  actually  thinking  about  the  collection  of  microscopic  states  that

possible for a given system. And when I say it  is canonical,  it  means that there is a

general set of rules which all the microstates in the ensemble follow.

So, of course, we have seen microcanonical ensembles. There also there was a specific

rule which all micro states were following, and that rule was a constant energy constant

volume and constant number of particles. Now in canonical ensemble, we are thinking

about a system, which is comprised of once again a very large number of particles, which

is present at a given volume. But now unlike the system in a micro canonical ensemble,

we  have  a  different  experimental  situation.  Now  let  us  see  what  we  mean  by  the

macroscopic  state  or  the  experimental  situation  under  which  we  are  studying  the

properties of a system in canonical ensemble. 

(Refer Slide Time: 01:48)



So, this is the experimental picture that I have in mind, when I talk about canonical

ensembles.  So,  as you see that I have a system marked here using this yellow box ok.

Now  this  system  is  surrounded  by  a  rigid  wall  which  is  impermeable  to  whatever

substance is there within it. And the system has been equilibrated with respect by placing

it in a thermostat. So, which means that the walls which are in contact with a thermostat

they are capable of exchanging thermal energy from within the system to the reservoir

and vice versa. 

Now how do I know that the system is in equilibrium? I  will measure the temperature

using a thermometer as shown here, and when the temperature of the system becomes

independent of time, I would say that the measurable property of the system temperature

is now independent of time, indicating that this system is now in thermal equilibrium

with the reservoir. So, under such condition we have already seen that the macro state of

the system is now given by specifying the value of temperature, the value of volume.

And the number of particles contained within the system of interest which is shown in

this yellow box. 

So, basically, we are talking about in an canonical ensemble a closed system, which is in

equilibrium with a thermal reservoir. Now of course, we already have seen the condition

of thermal equilibrium, and in terms of reservoir properties, the condition is I must be

having temperature of the system is equal to temperature of the reservoir. And therefore,

I am saying that the temperature of the this yellow box, this is going to be the same as

the temperature of this blue region. So, that is the measurable condition which involves

the reservoir property to establish the condition of thermal equilibrium.

Now, we have also described that if I want to know, what is the condition of thermal

equilibrium in terms of system properties only, then we have seen that this is given in

terms  of  the associated  thermo dynamic  potential.  Now when you have this  kind  of

macroscopic state given by temperature volume and the number of particles, we have

already  seen  that  here  the  thermodynamic  potential  is  given  by  the  Helmholtz  free

energy. And  therefore,  in  terms  of  system  properties  alone,  establishment  of  a  new

equilibrium  state  is  guided  by  the  fact  that  the  Helmholtz  free  energy  should  be

minimized under the given condition.

So, this is what we know about the macro state of the system. 
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Now let us go and try and have a look at the net energy content of the system a little

more  closely  Now  just  because  the  system  is  exchanging  thermal  energy  with  the

reservoir, then I cannot say that if I had the means to measure the energy of the system, it

must be fluctuating in time.  So,  this is a typical plot that has been shown over here as

you see to start with the system started with some value of energy which is shown here.

After some time, it is value reached here. And then after sometime it is value decreased

here.

Now, why is that happening so.  That is happening because,  when you have kept the

system in contact with the thermal reservoir; obviously, there will be some influx of heat,

and heat will flow also out of the system. Now when heat comes into the system, the net

energy content  of  the  system increases,  and if  the  net  energy content  of  the  system

increases, then that is shown here by an increase in the instantaneous value of the energy.

Now the moment the energy goes on increasing, it is expected that a hotter body has as a

higher energy content; which means that by putting in extra energy into my system, I am

heating the system up. But the temperature needs to be maintained constant.  So, at this

point the system would like to lose some energy. And the way it does it it releases energy

through the die thermal walls to the surrounding reservoir.

As a result,  the energy value comes down.  So,  this way by through the exchange of

energy between the system and the surrounding, the constant temperature condition is



maintained.  But  this  also tells  me that  this  must  be  having some confusing  concept

associated. And that is we have always talked about a constant energy condition, when

we were discussing the micro canonical ensemble. And now I am saying that even if the

system is at equilibrium, the instantaneous value of energy is not a constant. If I had

some means of measuring the instantaneous value of energy, it is varying with time. So,

isn't  that a contradiction,  how do I  say that the system is  still  in equilibrium?  I  will

answer this question.

But  before  that  let  us  have  a  look  at  what  happens  at  thermal  equilibrium.  Now at

thermal equilibrium, the instantaneous value of the system energy goes on fluctuating as

shown in this figure as I have mentioned right now. But as you see, if I take the average

within certain time interval, initially it was varying with time, that average as shown by

this red line over here. That is initially varying, and then it becomes nearly independent

of time.  So,  it is this average value that would be measured in experiments  ah, if we

could measure energy ok. 

So, we would say that at equilibrium, then the average value of this fluctuating quantity

becomes independent of time. And this average value is nothing but the internal energy u

as we encounter in the equilibrium thermal equilibrium system.  So,  this is a extremely

interesting concept, that we must remember that although energy is fluctuating about an

average value. This average value is independent of time, when the thermal equilibrium

has been achieved between the system and the surrounding.

Now, what is the consequence of this observation?  When I look at the consequence I

would like to remind you, that the value of energy of the system directly affects  the

number of microstates accessible to the system we have discussed this topic in detail. 
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So,  let  us  next  ask  the  question,  when  the  total  energy  is  fluctuating  about  a  time

independent average value. What happens to the associated microscopic states? So, if I

look a little closely, in terms of a simple example, let us go back revisit the example of n

distinguishable non-interacting spin half particles present at a given temperature T V and

number of number of particles is fixed.

Now, let me take this very simple example of 2 such particles. Now for each such spin

half particle, I am see I would say that well the system energy can be [vocalized-noise].

These 3 values and this follows from the solution of the Schrodinger equation for 2

distinguishable non-interacting spin half particles. Now here I have not explicitly shown

the field in which this spins, half particles are present. But it is presence is indicated by

the by this term H multiplied by the magnetic moment mu.

Now, let us say that I start with one microscopic state of the system with this energy 0

ok. Now for this 0 energy, I would say, what are the associated microstates by now; you

must be able to show very easily, that these are the 2 possible microscopic states, when

the total energy of the system is equal to 0 in the scale. Now if it so happens, that I have

the  system  in  this  higher  energy  state.  So,  what  happens?  What  are  the  typical

microstates associated with the system residing at the higher energy state. We understand

that this must be the case, when both the spins are oriented anti-parallel to the applied

field.



Similarly, if we could have the system in the lower energy state, then what would have

happened is  there would be only one microscopic  state  possible,  and that  is  the one

where both the spins are oriented parallel to the applied magnetic field. Now what is this

what is the outcome of this example, we conclude that here; let us say that this is my

average energy of the system E bar equal to 0.  So,  how many microstates are there?

There are 2 such microstates which I have put in here. Now think about the higher and

the lower microscopic energy states.  So,  when I have a lower energy that is  E  minus

delta E, where delta E is equal to 2 mu H. I see that I have one microstate accessible and

when I am looking at some E plus delta E state. 

I  have another microstate accessible to the system. Therefore, the conclusion that I get

from here is this. Like, if I could fix the energy at E bar, then the property of the system

will  be  controlled  by  only  these  2 microscopic  states  which  are  associated  with  the

energy E bar equal to 0. But if I allow fluctuations in the value of energy, the fluctuation

such that it can take up values like E bar minus delta E or E bar plus delta E, I see that

additional microscopic states like this or this become accessible to the system[noise].

Now, let us go and take a little more complicated example and that is as follows. 

(Refer Slide Time: 14:08)

So, next let us choose a small n something like n equal to 6 or so. Then what we find is

that, if I look at the possible values of the total energy of the system, and I plot along the

y  axis,  the  associated  probability  of  observing  the  system at  these  energy  values  in



contact with a thermal reservoir of course, then this is the kind of distribution that I will

get.  So,  once  again  you  get  a  peak  the  maximum number  of  microscopic  states,  is

associated with the average value, but as you can see that there are substantial number of

energy states associated with the energy values such as E plus delta E and E minus delta

E.

But  the  interesting  point  is  all  these  microscopic  states  are  accessible  provided  the

amount of energy that you are supplying to the system through it is interaction with the

reservoir is big enough to cover say delta E to delta E or 3 delta E similarly, minus delta

E minus 2 delta E and so on and so forth. So, what we understand here is ok, we are still

in the small n case. Now let me think about the case where I have n of the order of 10 to

the power of 23 a very large number. We have already seen that under such condition, the

probability distribution will take the shape of a Gaussian distribution. And this Gaussian

distribution is going to be very sharply peaked at around the average energy E bar ok.

So, E bar is associated with the maximum number of microscopic states ok. The system

is most probable to exist in those microscopic states that are having a total energy of E

bar. But think about E bar minus delta E. Please remember here delta E is a very small

number compared to the total range of E I values available, and then if I go from this the

position of the peak, I see that there are other microscopic states also possible which are

very close in energy to the E bar and there is a substantial number of them.

So now that we have understood that what is going to happen to the system, when it is

capable  of  taking  up  energy  and  releasing  energy  to  the  thermal  reservoir?  We

understand that at thermal equilibrium the system will evolve towards the average energy

state, which is associated with a maximum number of microscopic states, but there will

be other microscopic states associated with accessible values of energy like, say E plus

delta  E  or  E  minus  delta  E.  So,  what  is  the  conclusion  from  this  discussion?  The

conclusion is like this. The number of microstates  instantaneously  so, the conclusion

from this analysis is summarized here if we think about the microstates of a canonical

ensemble, where the system macroscopically is being maintained at a given temperature

volume and number of particles. 
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The number of microstates that is instantaneously accessible to the system is larger than

that present in a microcanonical ensemble, where you have an energy of total energy

value equal to E bar volume v and the total number of particles N. And this is exactly

what we have demonstrated to you by showing that if I fix those to spin half particle

system to E bar equal to 0 the number of microstates of accessible would be only 2. But

if I allowed the fluctuation of energy about E bar such that E bar plus delta E and E bar

minus delta E are also accessible. Then the total number of microstates would be equal to

2 plus 1 plus 1 equal to 4.

The other important conclusion that we have got from here is under the condition that the

total energy is varying instantaneously; all microstates are not equally probable. For a

given value of energy S whatever microstates possible corresponding to that value of the

energy are equally probable, but when many such values of energy are accessible to the

system, the different bunches of microscopic states, that are associated with these range

of values make the accessible microstates to the system unequal in their probability of

occurrence. So, then the question comes, if I know ok I have a collection of microscopic

states for a given system at thermal equilibrium. May I ask, what is the probability of

observing this system, in a given microscopic state I? And this is the question that we are

going to answer next.
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So, if I quickly go through the concepts, then we have said that for a closed system in

contact with a thermal reservoir, I have all the micro states characterized by the different

accessible values of E I. Then I am asking the question, what is the probability associated

with the I ith microscopic state, that has an energy Eigen value of E I. The answer is this

probability  is  going  to  be  proportional  to  exponential  of  minus  beta  E  I.  In  this

discussion, I am going to use this definition again and again. 
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So, beta is equal to KBT whole inverse if I define the macroscopic state of the system in

terms of this temperature t.

In that case we can define this quantity, KB which is a universal constant and known as

the Boltzmann constant. And so, KBT together give us idea about the thermal energy of

available at a temperature T. Then beta is inverse of this thermal energy. Now if I look

back,  then I  find  that  the probability  associated  with the  I  yath microscopic  state  is

exponential of minus beta E I, where I is the I yath energy Eigen state obtained for this

particular system. Now of course, if you talk about probability, as you have seen that

there is a proportionality sign here.

Now, I know that under the normalization condition,  I  must be having that summation

over I P I equal to 1. So, let me now write down that ok let me say that P I is equal to

some normalization constant Q 1 by Q multiplied by E to the power of minus beta E I.

Therefore, if I sum over all possible microstates I and sum over P I I must be having one.

Therefore, doing a very simple algebra, we can say that this must be equal to 1. Or in

other words I identify as the normalization constant Q, summation over I E to the power

of minus beta E I, is that clear, ok? So, if I know the different energy eigenstates possible

for a given system, then  I  can find out the normalization constant  Q and accordingly I

can completely write down what is the probability that this system resides in the I th

energy Eigen state.

For example, if I have this classic 2 state system where this is the lower energy state is

having an energy 0, and the upper energy state is having an energy equal to epsilon. In

this case, do I know how to write down capital Q? Of course, I understand that capital Q

is  equal  to  summation  over  I  E  to  the  power  of  minus  beta  beta  E  I.  How  many

microstates are there? How many energy Eigen states are possible? 1 2. Therefore,  I

would say that this can be written as beta E 1 plus E to the power of minus beta E 2. So,

what is E 1? E 1 is equal to 0.

So, I would write that is equal to minus beta into 0. What is E 2? E 2 is this energy value,

and E 2 by the definition of the problem is given by this number epsilon. Therefore, if I

simplify I find that for this simple system, capital Q is equal to E to the power of minus

beta  epsilon.  So,  this  is  perfectly  simple.  Then  if  I  ask  the  question,  what  is  the

probability that, this system presides in the upper energy state E 2 at a given temperature



t/. So, then the probability that the system occupies the upper energy state characterized

by the energy E 2, will be given by 1 by Q into E to the power of minus beta into E 2,

right.

So, if that is so, then I can very quickly write down that P 2 is going to be equal to E to

the power of minus beta epsilon divided by 1 plus E to the power of minus beta epsilon.

Now what is P 1? P 1 is the probability that the system occupies the lower energy state,

that is this one ok. By definition P 1 is equal to 1 by Q into E to the power of minus beta

E 1. If I put all the values back, what should I get, I get this is equal to 1 plus E to the

power of minus beta epsilon, right. Now you can very easily check that P 1 plus P 2, that

is equal to 1 ok.

So, what I have achieved over here is as follows.  I  have achieved here the probability

associated with the I th microstate in terms of not only the energy Eigenvalue, but also in

terms  of  a  normalization  constant,  which  sums over  all  possible  micro  states  of  the

system. 
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With this knowledge then the results of molecular thermodynamics gives us something

which is  very, very  important.  And that  is  a  bridging relationship.  Have you seen a

bridging relationship before? Yes, you have, you have seen that in a micro canonical

ensemble. 
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We could write  down this  famous Boltzmann hypothesis,  that  S is  equal  to  KB l n

gamma ok.

Now, all  the  information  regarding  the  micro  states  is  contained  within  this  factor

gamma, and all information regarding the macro state is contained within the entropy S;

which  means  that  this  gave  us  a  bridging  relationship  between  the  macro  and  the

microscopic length scales. In the canonical ensemble, we also have a similar relationship,

which is which can be derived from the Boltzmann hypothesis. And this relationship is F

is equal to minus k t l n Q. So now, let us have a look at what we have achieved over

here. F is equal to minus KB T l n Q. Now what is Q Q is equal to summation over I E to

the power of minus beta E I.

So, as you see that all the microscopic information that you can ask from a given system,

they are contained within this normalization constant Q. And if you look at the original

expression, then what do I have on this side? I have the Helmholtz free energy F and this

Helmholtz free energy F is the representative property of the macroscopic length scale.

And therefore,  this particular relationship is the all  important  bridging relation in the

canonical ensemble ok. 

So, as you understand in the canonical ensemble the thermodynamics is being described

in terms of a given temperature volume and number of particles. We know that  F  is a

thermodynamic potential under such condition, which is a natural variable of these these



3 parameters and this appears in this bridging relationship. On the other hand, when you

had the micro canonical ensemble, there I know that I can describe the system in terms of

U V N.  These  3  parameters  and  the  entropy  can  be  described  in  terms  of  these  3

parameters as functions of natural variables of these 3 parameters. So, side by side just

like the starting from the hypothesis of Boltzmann in the micro canonical ensemble, it

can  be  shown in  the  canonical  ensemble  that  the  bridging  relationship  gives  you  a

connection between the Helmholtz free energy and the canonical partition function. Now

I have introduced this terminology the canonical partition function.

And this describes the normalization constant Q, the normalization constant Q tells us

how the different energy states the total  available  energy is distributed or partitioned

amongst the different accessible energy states. And that is the reason why it is called a

partition function. 
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So, the at the in conclusion, I would say that we have now come across 3 very important

relationships as far as the description of canonical ensembles is concerned, we can think

about  now what  is  the  probability  of  the  I  th  microstate  in  this  system in  terms  of

temperature,  in  terms  of  the  energy  Eigenstates  that  we  are  talking  about,  and  the

canonical  partition  function  Q.  And  knowing  this  at  the  microscopic  level,  we  can

calculate  all  possible  thermodynamic  properties  using  this  bridging  relationship;

obviously, you would be asking the question, how do I derive such a relationship. As I



have said it is possible to derive these relationships from the Boltzmann hypothesis for

an isolated system. In the next lecture, we will show you how to do so.

Thank you.


