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Welcome. Today we are going to start on the last part of the grammar of introduction to

molecular thermodynamics.  And in this connection,  today we are going to talk about

ensembles. If you look at what an ensemble means, it means a collection. And what kind

of collection are we talking about? We are talking about a system which is comprised of

a  very  large  number  of  particles,  which  may be  atoms,  molecules  very  complicated

molecules or something else that I am not specifying right now.

But  I  have  a  very  large  number  of  particles  in  the  system  under  some  given

thermodynamic  condition.  And  we  have  already  seen  in  this  course,  at  under  such

condition  it  is  possible  to  show that  the number of  microstates  is  a  very, very large

number. So, when I talk about an ensemble in this case, I am talking about or a collection

of all those microstates that are possible under a given thermodynamic condition.

And in today's  lecture  I  am going to  introduce to you the microcanonical  ensemble.

Although, this in this section we are going to look at two kinds of ensembles. The first

one is the microcanonical ensemble, and the second one is the canonical ensemble. But

todays focus is going to be the microcanonical ensemble, and in the next lecture, we will

talk about the canonical ensemble.

So, let us go and try and see what is the advantage of talking in terms of this ensembles.
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So,  as  I  said  today’s  topic  is  micro  canonical  ensemble,  and  how  do  I  define  a

microcanonical ensemble? As I have said that the moment I try to define a any ensemble,

I will have to talk about one condition that is obeyed by all the microscopic states present

in  the  system.  In  our  case  we are  going  to  use  the  language  of  thermodynamics  to

describe this generic condition.

So,  when I  am talking about  a  microcanonical  ensemble  I  am basically  defining  the

thermodynamic state in terms of the internal energy, volume and the number of particles.

Now that probably tells you that we are talking about an isolated system. At equilibrium

this isolated system has a specific  value of energy which is u that is a total  internal

energy.  The  and  therefore,  the  system  is  not  exchanging  any  energy  with  the

surroundings, and that is the reason why I would say that the system is surrounded by an

adiabatic wall.

Now, if the system is surrounded by a rigid wall; in that case it is micro state will be

characterized by a given value of volume V, which is a volume of a box if all the or a

bounding or the space contained within the bounding walls of the system. And finally, if

the  walls  of  the  system are impermeable  to  the  particles  inside,  then the  number of

particles in the system are also going to be a constant. So, this is typically an example of

an isolated system at equilibrium; where it is equilibrium state is characterized by the

internal energy volume and the number of particles.



So,  for  a  condition  micro  state  like  this  we  have  already  seen,  how  to  define  the

corresponding microstates as given by the solution of Schrodinger equation? And we

have also seen how to calculate the number of such possible microstates for a given

value of the total energy of the system. So, as before let me designate this number as

gamma.

So,  what  is  gamma?  Gamma  is  the  number  of  microstates  which  conforms  to  this

particular  thermodynamic  micro  state  condition.  And  in  this  case,  I  would  use  the

fundamental hypothesis of statistical mechanics saying that each and every one of these

gamma microstates are equally probable.

Now, as you understand that, this particular limit is the description of the system in the

macroscopic limit  and whenever I am talking about the microscopic limit,  then I am

characterizing  them  in  terms  of  quantum  numbers  and  counting  the  number  of

microstates. All  of which obey this particular number, now the we have already seen

what  the  bridging  relationship  is  between  these  2  limits  and  that  is  the  Boltzmann

hypothesis.

So, do you remember what the Boltzmann hypothesis is? Yes, the Boltzmann hypothesis

gives you the entropy which is a thermodynamic quantity in terms of this number of

microstates gamma. So, this fundamental equation once again is a hypothesis. We can

justify the existence of an equation like this. 

But as I have discussed before, it cannot be proved. It required the genius of Boltzmann

to come up with an equation like this. In today's class we are going to look at how we

can use the Boltzmann hypothesis within the framework of a microcanonical ensemble to

obtain  the  thermodynamic  property  of  a  system for  which  we  know the  underlying

solution of the Schrodinger equation.

So, let us go and see what we can do with this very simple set of equations to achieve our

goal.
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As you may remember, we have already seen this system of N non-interacting spin half

particles which is present in an isolated condition, but it is immersed in a field of strength

H. In that case this is a typical microscopic state of the system, and we have already seen

that how the different microscopic states of the system can be characterized in terms of

this number. Small n which indicates the number of up spins in a given microscopic

state. 

And obviously, small  n is  a function of the total  number of particles,  as well  as the

quantity epsilon which is related to the total energy of the system. So, for a given value

of epsilon and for a given system where you have a specific magnetic  moment.  You

understand that epsilon can have specific values, and we have been able to show that if N

is a very large number, then we can use a sterling’s approximation and calculate the

number of microscopic states as a function of N which using the sterling’s approximation

simplifies to this expression.

This  derivation  we  have  already  done  while  we  were  counting  the  number  of

microscopic states for a system like this. But I never explained to you why I am doing

this? Why I am counting the number of microscopic states. So, this will now become

evident to you when I say that I can now use the Boltzmann hypothesis.
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And find out the entropy of a system like this. So, the entropy is obtained by replacing l

N gamma by this quantity S by k b.

So, what is S by k b? That is nothing but l N gamma. So, that is what exactly we have

obtained  from  our  previous  studies.  So,  this  tells  me  that  yes,  starting  from  the

Hamiltonian of a spin half particle.  I  could build up a molecular a model for which a

typical microscopic state is like this, and then starting from that molecular model I am

now able to predict a thermodynamic property. 

And I am asking, I am proposing here that the entropy of the system is going to be given

by an expression like this. So now, you understand that this is a big advancement thanks

to Boltzmann hypothesis, and here embedded in everything that we have done is the

hypothesis that all the microscopic states that I have used here they are equally probable

for a given energy volume, and number of particles.

Now, in the next part of this lecture we are going to generalize this discussion to a 2-state

system; obviously, you understand a spin half particle is indeed one example of a 2-state

system. So, it means that a solution of the Schrodinger equation of the microscopic states

of the system yields only 2 energy eigen states. So, let us next go and have a look at how

we can work out within the scope of microcanonical ensemble the thermodynamics of a

2-state system.
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So, let me introduce this 2-state system as follows. First of all, I must be having for the

ensemble a definition of the thermodynamic state. So, I have the thermodynamic states

specified as some given value of the total energy of the system, some volume of the

system and a total number of particles. So, in this picture I show typically what I mean

by  this.  So,  my  system  has  a  fixed  volume,  it  is  surrounded  by  a  rigid  adiabatic

impermeable wall and I have these particles in the system which I have shown here.

Now,  each  of  these  particles  have  been  subjected  to  be  investigated  using  the

Schrodinger equation. And then I can use the solution of the Schrodinger equation to

define the microstate of each of these particles. And by my choice that, I we find we

define that there will be 2 such solutions possible. The lowest energy eigen state is the

one which has been characterized by an energy value of 0. In certain scale and there is

only one more energy state possible and that is energy equal to epsilon.

Now, as you see that for the spin half system, what did we have? What would be the

energy E equal to 0 state? If I placed a field H like this, then the E equal to 0 state will

have  the  spin  up  direction,  and  the  higher  energy  level  would  have  the  spin  down

direction, and in that case, I would have E equal to epsilon would be equal to plus mu H,

and actually plus 2 mu H. Because I am taking minus mu H as the 0 of scale of my

energy.



And  therefore,  the  question  that  I  ask  for  this  generalized  system  is  can  I  do  the

thermodynamics of a system like this, where the system is comprised of a very large

number typically the Avogadro number of particles. And I maintain the system under the

condition of isolated experimental situation, and I ask the question what is the entropy of

the system, or any other thermodynamic property of the system for that matter.
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In order to do that, what we are going to do is, we have talked about the microstate of

each particle, and we know that the total number of particles is equal to N. Now in a

given microstate let me indicate by this number small n, the number of atoms in the

higher energy state. 

And since the total number of particles is constant in the system therefore, I must be

having if small n is the number of atoms in the higher energy state, what is the number of

atoms in the lower energy state? That must be capital N minus small n the rest of the

atoms or particles present in the system. There is something else that comes out from this

particular treatment.  I  have already said that the number of particles is constant in this

system, and also the total energy of the system is constant, right.
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Now, I have the situation in a given microstate, I have N particles residing in the upper

energy state having energy epsilon, and capital N minus small n particle residing in the

lower energy state having energy 0. So, for any such microscopic state what is the energy

of the system? That must be small n into epsilon plus capital N minus small n into 0.

And therefore, I can very easily say that capital E that is the total energy of the system is

given by small n into epsilon. Or in other words small n that is the occupation number of

the higher energy state, that uniquely decides the describes the different microstates of

the system, this is related to the total energy E and epsilon.  So, this is exactly what we

have shown here.

So, we say that if I have this information regarding the microstate of the system, telling

me that there is only one parameter of the microstate which is epsilon. And in the micro

state  I  have  the  total  number  of  particles  N,  and  the  total  energy  E.  Then  I  can

characterized all possible microscopic states of the system in terms of this independent

parameter which in this case acts as a does the role of a quantum number which is given

by a ratio of this E by epsilon.

Now, once we know this then let us see and go ahead, and try to see how the system now

looks like. 
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So, this is a typical representation of the microstate of the system, where as I have shown

using colour codes small n corresponds to the number of particles or atoms in the higher

energy states. So, in this system I have 1, 2, 3, 4, 5, 6, 7 atoms. Out of these I have only 2

of them residing in the higher energy state. And the rest that is rest 5 particles 1, 2, 3, 4,

5, they will be residing in the lower energy state.

A typical way of representing this kind of microstate using the energy diagram is like

this. So, this is E equal to 0, and this is E equal to epsilon. And according to this picture,

I  have how many in the lower energy state? 1, 2,  3, 4, 5  particles in the lower energy

states,  and  only  2  particle  in  the  upper  energy  state.  So,  this  is  the  energy  state

representation of what I have shown pictorially in this picture.

Now, once we have clarified the setting up of the model system, let us next concentrate

on what we can say about the thermodynamics of this 2-state system.
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So, I know the number of microstates you can very easily find out, that this is going to be

the number of microstates of the system consistent with a given value of capital N, that is

the total number of particles and the total energy E.

Now, as you see that gamma N has contributions both from small n minus capital N and

only small independent terms. And I will leave this expression to be derived by you by

looking at the a model system. Because I have already worked out this for the spin half

particles.

Now, once you know this number of microstates, then what is the entropy, I am going to

use the Boltzmann distribution, and directly write down the entropy S as a function of n.

But here on the left-hand side, I have written S by k B, because this is the term which is

equal  to  this  log of  gamma term.  As a  result,  as you see that  the right-hand side is

identical. The only thing that I have changed is the left-hand side. 

Now once you know entropy then the information that you have is as follows. You have

an  isolated  system,  in  that  isolated  system  many,  many  states  are  micro  states  are

possible.  And these  microstates  are  uniquely  described  by a  single  parameter  which

depends on the total energy and the number of particles.

Now, I  am going to go a little  beyond what happens to  the system, if  I  introduce  a

concept of temperature. Now in an isolated system you must be very, very careful. If you



are use studying an isolated system, it is not interacting with the surrounding in any way.

So, it is not exchanging energy with it is surrounding.

But if it so happens that, I allow the system to undergo a change in it is energy like by

bringing it into equilibrium with some other thermostat. Then upon equilibration with the

thermostat, the energy value will change why will it change because the system will then

exchange thermal energy between itself. 

And it is surrounding, and then I once again isolated and make it another isolated system

at equilibrium; such that it has some other value of the total energy. And if I have not

allowed the change in a volume and number of particles so, basically what I have with

me is the first state where I had E 1 V N and the second state, where now I have E 2 V N.

So, which is a quantity that has changed between these are the same isolated system. I

find that the 2 isolated systems are different in terms of the amount of total energy that it

has. So, in this case we can start talking about what is the temperature.

Now, you understand that the entropy of the system in the first case, that is going to be a

function of this. So, it is value is going to be dependent on what E 1 is. And in the second

equilibrium state this is going to be dependent on the value of E 2. And then we can

measure the rate of change of entropy as the total energy changes. And this definition is

given by 1 by T that is del S del E V N. So, this is the result that I am going to use next,

and try to see what the value of temperature is. Now if I know S, then I know that I am

going to use the definition del S del E V N.

Now, look at the expression of S that we have, we now know S as a function of n.
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Now, in order to obtain temperature, we would require del S del E V N. But what I have

here is S as a function of N. Therefore, I am going to use a chain rule and say that I am

going to evaluate del S del N under the condition of constant volume and number of

particles.

But now I would also require del N del E under the same conditions. But do you know

what E is of course, we know that small n is related to capital E. So, that is capital E by

epsilon. Now please try to understand that for a given system this epsilon is a constant. It

is a characteristic constant of the system that I am starting. Therefore, I can very easily

say what is del N, del E if I keep everything else constant. That must be equal to 1 by

epsilon; where epsilon is once again a constant.

If  I now just  look back  I  know S as a function of N. Therefore,  I  can find out this

derivative. And I already know that this particular derivative is equal to  1 by epsilon.

And therefore, the result that we get is what is shown here, and this is given by k B by

epsilon then logarithm of this fraction minus 1.

So now you have actually  achieved a  lot.  You have started from the solution of the

Schrodinger equation for a given system; which gave you only 2 solutions 2 energy eigen

states, corresponding to the 0 energy and some excess energy epsilon. And we have been

able to obtain the entropy as well as how this entropy would change if I allowed the

change in energy of the system.
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So, in the next slide we go a little further in the thermodynamics of the 2-state system

and introduce what we call as a reduced parameter. So, this reduced parameter is defined

as theta. So, what is theta? Theta is a in this particular case a ratio of this energy epsilon

which is a parameter from my microscopic model. And k B T that is the thermal energy

at a temperature T.

Now, epsilon has a dimension of energy k B T has also has a dimension of energy. So,

what  is  the  dimension  of  theta?  The  dimension  of  theta  is  1,  which  means  it  is  a

dimensionless quantity. And that is the reason why I all it a reduced parameter. Now if I

write  down the  number  N as  a  function  of  this  reduced  parameter,  then  this  is  the

expression that I am going to get. You see that small n is equal to capital N divided by 1

plus exponential of theta.

Now, if that is so, then it is possible to go ahead and simplify the expression for the total

energy of the system, because the total energy of the system is N epsilon. And I know

what small n is as a function of theta. So, I just plug it back over here, and that gives me

the total energy of the system.

So far so good. But if this is not exactly a measurable quantity, what is it that we measure

in experiments when we are trying to understand the thermodynamic properties of the

system? One typical quantity is it is specific heat. And the definition of specific heat is

that if you know the total energy of the system, and if you can measure this measure the



response  of  the  system how the  energy changes  as  you vary  the  temperature  of  the

system under isochoric and constant particle conditions then this ratio will give you the

specific heat under isochoric condition in a closed system. 

So now, I have an expression of E in terms of my microscopic parameters epsilon, and

theta  which  includes  not  only  the  microscopic  parameter  epsilon,  but  also  the

temperature T. And therefore, it is possible for me to derive an algebraic expression for C

v. So,  all  I  have  done is  I  know E,  I  have  taken  a  derivative  of  E with  respect  to

temperature.

So, once again you need to find out C v that is equal to del E del T V N. Now you

already know E as a function of theta. Isn't it? Therefore, you will find it useful to derive

this as del E del theta V N multiplied by d theta d T. Because by definition theta depends

only on temperature as a variable epsilon and k B both are constants.

So now all you need to do is, you can find out what d theta d T is. So, what is d theta d

T? D theta d T is now going to be given by minus epsilon by k B T square. I can use this

expression put it back in here, and I since I know E as a function of theta. I can find out

this particular derivative. So, by in doing a little bit of algebra over here you will be able

to show that this is what the specific heat is.

Now, having an analytical expression is actually extremely useful when you interpret the

experimental data.
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So, that is what we are going to show right now. So, if you carry out experiments by

measuring the heat capacity of some given substance, and you and for this you measure

the  heat  capacity  at  different  temperatures,  then  sometimes  your  experimental  result

might show a variation like this. So, initially your heat capacity is small, then it goes up

and then it turn goes down. And this maximum appears somewhere around a near about

0.5, value of this k B T by epsilon, that is a 1 by theta.

Now, this behaviour you must realize is not a common behaviour for example, for the

solids. Because you have learnt from de long petit law that at very high temperatures I

must be having a constant value of heat capacity in a system. And therefore, if you have

any such observation, you actually say that well I do have an anomalous behaviour. And

this particular behaviour is known as typical of a system, where it has 2 energy states

which are very close to each other. And all other energy states are much, much higher

compared to these 2.

In that case, yours heat capacity upon measurement at different temperatures will show a

behaviour like this. And the appearance of this maximum is known as a Schottky hump.
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So, as far as experimentalists are concerned, what they will say is well, I have done a

measurement. I have taken a measurement of the heat capacity of the system, and I have

repeated my experiments at different temperatures, and I have come up with the Schottky

hump.

Then they will construct the microscopic model of the system by saying that, there are 2

lowest energy eigen states of this system live very close to each other. 
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And the others are probably much, much higher up. Therefore, at normal temperatures

the system populates only these 2 energy states and not these ones. And it is only under

that condition that you will observe a Schottky hump in your experiment.

(Refer Slide Time: 33:32)

And one last thing that I would like to mention over here is that we have already seen the

value of N as a function of theta.

Now, let me ask this question. At high temperature when the temperature goes to infinity,

in that limiting case theta must go to 0. So, in that case what happens is, I retrieved the

value that small n must be capital N by 2. So, what does it mean? It means at very high

temperature, if I have a 2-state system then the population will be equally distributed

between the lower and the higher states.

Now, if I am at a very low temperature.  In that case T goes to 0; which means that

exponential theta that is much, much greater than 1. So, I can neglect this term one in the

denominator. And write down N as capital  N; that is,  the total  number of a particles

multiplied by exponential minus theta. Now let me put back the expression for theta, and

that is nothing but the well-known result that we have come across previously as the

Boltzmann distribution.

So, this  is  where I am going to stop.  I  have shown to you the strength of statistical

thermodynamics  or molecule of thermodynamics,  where we start  from a very simple



model of the particles atoms or molecules comprising the system, where they are present

in under a given thermodynamic state. And how we can interpret important experimental

results  using this  very simple  models.  In the next  class  we are going to  discuss the

canonical ensembles which correspond to a much more realistic system where the system

has been put in contact with a thermal reservoir. Goodbye.


