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Molecular thermodynamics is actually a very special application of statistical mechanics,

which is one of the fundamental corners of condensed matter physics. Now in today’s

lecture what we are going to do is, we are going to look at the fundamental aspects of

statistical mechanics; that is going to be extremely important as far as our discussion of

molecular systems are concerned.

(Refer Slide Time: 00:52)

Now, for the part that I am going to discuss today; i would like to put as reference a very

simple book which is an introduction to thermal physics by D V Schroeder, which gives

you  a  lot  of  insight  or  rather  detailed  insight  into  the  connection  between  the

thermodynamics that we observed, and the microscopic states underlying each of our

observation. 

So, now let us start by outlining the hypothesis of statistical mechanics.



(Refer Slide Time: 01:23)

As the title suggests, these are hypothesis when the scientists were faced with the task of

formulating  a  general  description  of  systems  comprised  of  a  very  large  number  of

particles, where you would like to start from the molecular model, and try to predict the

property that you are going to measure in the real microscopic world. Certain hypothesis

needed to be proposed to start building this theoretical description.

The first one of this hypothesis is known as the hypothesis of equal a priori probability.

So, when I say a priori, it means that I am not at all assuming anything. I am just starting

from the stretch. So, to say, and this hypothesis says that if you have a given condition of

a given energy, given volume and a given number of particles. Then at this point we

know that there are several microscopic states associated with one given condition of this

three thermodynamic variables. And this hypothesis says that all the microscopic states

that are associated with a given condition or given values of E V and N are a priori

equally probable.

So, I do not have any basis of trying to explain why these kind of statement is coming.

All we can say is, this appears to be a very important starting point for the formulation of

the principles of statistical mechanics. So, once you can, let me remind you that this is a

hypothesis. This cannot be proved rather later on we can try and understand why this is a

justifiable hypothesis, but we can never prove it.



There is another hypothesis which gives us the other cornerstone of statistical mechanics

and that is the Boltzmann hypothesis, and this hypothesis is once again associated with a

famous scientist  Boltzmann,  who gave us probably the most  important  mathematical

relationship  that  gave rise  to  application  of  basic  theoretical  physics  to  a  very large

number of systems with real practical applications. So, let us go back and have a look at

this one single equation that probably has single handedly changed the way we model

real interacting systems.

Now, what do I have in the Boltzmann hypothesis, this equation. It has two sites. In the

first site, what I have is the quantity S, this is nothing, but the entropy of the system. So,

when  I  say  this  is  the  entropy  I  understand  that  I  am  talking  in  terms  of  the

thermodynamic properties of the system. So, which means that this  is a macroscopic

property.

On the other hand, I find on the right hand side this quantity gamma we have seen. What

gamma is. Gamma is the number of microstates number of microstates possible, and as a

result you see that we are here talking in terms of the microscopic model for a given

system. We also know that if I specify the value of e v and n, which in other words if I

have an isolated system, then at equilibrium the entropy of the system has a fixed value.

And now the Boltzmann hypothesis is connecting this thermodynamic property to the

number of possible microscopic states, that are associated with this given condition.

Here instead of gamma what we have, is the log of gamma. You would understand why,

because gamma is a huge number, and therefore, the log of gamma probably is a much

more physically intuitive quantity that is going to enter into this relationship.

Now, what is k B? K B is known as the Boltzmann constant. So, this  subscript b is

actually signify the name of Boltzmann. So, S is proportional to l  n gamma. So, the

situation  is,  you have a  system where  it  is  an  isolated  system,  you have  defined its

thermodynamic state at equilibrium by specifying a given value of its internal energy

volume and number of particles.

We have already seen in  this  course,  that  under  such condition  we can find  out  the

number of possible microscopic states. And if N is very large if the, it is a macroscopic

system, and the available amount of energy is also very large. We know that the number

of microscopic states gamma is going to be very large.



Now, if  I  know what  the  natural  logarithm of  this  number  gamma  is,  according  to

Boltzmann  hypothesis  I  can  immediately  write  down  that  entropy  of  the  system  is

proportional to the log of gamma, and the proportionality constant is now known as the

Boltzmann constant. So, as you understand that the Boltzmann hypothesis gives us an

extremely  important  relationship,  which does  the very crucial  task of  connecting  the

microscopic system property information to the macroscopic properties of the system.

Now, let me try and have a demonstration of how these concepts are relevant to all the

discussions that we had till now in this course.
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So, let us revisit the microstates in an isolated system, and the system is comprised of

capital  n  non-interacting  and  distinguishable  particles  we  can,  as  well  have

indistinguishable particles as we have seen in the last lecture.  And if I have a single

particle like a spin half particle or a simple harmonic oscillator, or a particle in a box or a

rigid rotor. I know that I can define the microscopic states in each of these cases by

knowing the solution of the Schrodinger equation. And also I can find out that if I fix the

total energy of the system, I can count the number of possible microscopic states for a

given value  of the total  energy, the total  number of particles  and the volume of the

system.



Now, let us go one step ahead and remind you of a specific system that I am going to use

to demonstrate to you. The two hypothesis that I have introduced to you in this lecture.

the first one.
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 So, let us once again remind ourselves that; what is an Einstein solid. And Einstein solid

is a collection of capital n simple harmonic oscillators which are not interacting with

each other, and they have epsilon units of quantised energy. And all the simple harmonic

oscillators  have the same angular  frequency omega. So, if  these collection of simple

harmonic oscillators are placed in a constant volume v, then it is an isolated Einstein

solid, and then the number of microscopic states can be very easily calculated like this.

So, what the two hypothesis tell us from this expression are as follows. First if e and n

are fixed, then these many microscopic states are possible, and all these states are equally

probable for the given values of E N and V. And if you can compute what gamma is.

Immediately you can find out for this isolated system. The entropy value is going to be k

B l n gamma. 
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Then therefore, I would say that if gamma is equal to epsilon plus N minus 1 factorial

divided by epsilon factorial by N minus 1 factorial for large values of epsilon, and N this

is approximately equal to epsilon plus N factorial  divided by epsilon factorial  and N

factorial, then; what is the entropy of the system.

Entropy of the system is S equal to k B l n gamma, and therefore, this is equal to l n of

epsilon plus n factorial divided by epsilon factorial by n factorial. And you can now write

this as l n epsilon plus N factorial minus l n epsilon factorial minus l n N factorial. Now

this looks pretty familiar, because if the individual numbers epsilon and N are large, you

can use the stirlings  approximation,  and then very easily  write  down that  I  must  be

having in this case this simplification, and; obviously, this kind of algebraic expressions

can  be  simplified,  and  the  net  result  is  going  to  be,  that  I  can  obtain  an  algebraic

expression for s in terms of epsilon and n right. And therefore, this actually is a big lift in

the challenge for modelling complex systems, where there is a very large number of

particles present.
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Now, let us next to go, and have a little more complicated situation and the situation is an

isolated and compose it Einstein solid. Now before this we have always been talking

about  one  single  block  of  Einstein  solid,  which  is  comprised  of  capital  N  simple

harmonic oscillators non-interacting and distinguishable.

Now, what I have done is, I have taken this big block and divided it into two subsystems.

There is the subsystem 1 and there is this subsystem 2, and what I am going to do is, to

start  with.  I  will  not  allow any interaction  between subsystem A and B,  but  for  my

current purpose, what I am going to do is, I am going to assume certain things. It says

that the subsystem A and B, they are extremely weakly coupled. So, that the individual

energies of the system do not change much at short time, but change at a very long time,

upon exchange of energy between themselves.

So, what are the ways in which I can design an experimental situation like this? So, once

again following the original representation I have taken an insulated box.
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So, this insulated box or this big block of solid box, which is rigid impermeable and

adiabatic,  so  that  there  is  no  exchange  of  energy  volume  or  particles  with  the

surrounding.

Now, I have constructed a partition in this box, and this partition is such that it is highly

non adiabatic rigid, as well as impermeable. And therefore, the solid material that I have

on the two sides. Let me shade them like this, and let me shade them like this. Although

they are the same solid, I would say that there will be no exchange of either energy or

volume or mass between them.

Now, I am going to alter this model a little bit. I am going to make the separator weekly

adiabatic. So, what do I mean by weekly adiabatic. It means that the system if I measure,

if I had some method of measuring the energy of the system at short times, the energy of

this subsystem would be epsilon A and energy of this subsystem would be epsilon B and

by the given condition. Since my entire box is insulated, and it is an isolated system and

this is equal to capital E which is a constant ok.

Now, I had since I have made this separator weekly diathermal, which means that these

two systems can  now exchange  energy  between themselves,  but  the  separator  being

weekly  diathermal  one.  What  will  happen  is.  At  any  given  instance  of  time  if  you

measure the energy of either the compartment A or the compartment B, you will find that

they have more or less constant value of energy, but if you wait for a long time, because



of this nature of weak coupling between them, and the possibility of very small exchange

of energy, what will happen is. There will be, let us say epsilon will go on increasing and

epsilon B will go on decreasing. If to start with epsilon A was low and epsilon B was

high.  So,  with  this  exchange  epsilon  A with  will  increase  epsilon  B  will  decrease.

Keeping this condition that epsilon A plus epsilon B is always a constant.

So, that is the basic idea behind designing this kind of system, and then there are certain

points that I would like to highlight over here, and they are as follows. 
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if  I  look  at  the  macro  states  of  the  isolated  Einstein  solid  comprised  of  these  two

subsystems  A and  B.  Let  us  say  the  compartment  A,  I  have  three  simple  harmonic

oscillators. And in the compartment B I have three simple harmonic oscillators. So, it is a

system comprised of 6 simple harmonic oscillators distributed equally on the two sides

of the compartments three each. And we also have in this Einstein solid, the total energy

is 6 quantum. So, that epsilon A plus epsilon B is equal to 6.

And then depending on what we know that depending on what the value of this N and

epsilon are, I can find out gamma. And if I now calculate the number of microstates

gamma and the probability of observing a particular microstate where the energy of the

compartment A, is epsilon A. We have already seen this kind of pictures.



Now, what is these kind of picture. Tell me there are several observations that we can

make over. Here we find that epsilon A can take a values from 0 to the maximum, which

in this case is 6 and the probability of the some sub-compartment A, to have the value of

energy epsilon equal to 0 is much less compared to the situation, where it has an energy

value equal to 3.
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Now,. So, this tells us that if we prepare the composite solid in such a state that epsilon A

is equal to 1, and epsilon B equal to 5, then the number of accessible microstates of the

solid is 63, making its probability somewhere equal to 0.14.

So, if I go back. So, I am talking about epsilon A and epsilon B in such a way that

epsilon A is equal to 1. So, automatically epsilon B is equal to 5. So, I have started with a

system, started with a state of the system, where epsilon A is equal to 1 and I am here,

and the probability of this state, starting state is 0.14.

Now, if I go down and check once again that what is going to happen? If we allow the

subsystem to interact weakly, and exchange small amounts of energy over a very long

period of time. This composite solid will move towards the most probable macro state,

why is it. So, that is because once again let us look at the situation, where I have these

two compartments separated by this weakly diathermal separator, which allows in the

long time, a small exchange of energy between the compartment A and compartment B.



Initially I started with how many quanta of energy in a one quantum of energy in B 5

quanta of energy. Now if I allow them to exchange energy as I have said before, then B

being at higher energy is in a position to lose some energy to 1. So, this number will go

up to 1 2 3 so on and so forth, and correspondingly this number will come down to 5 4 3

and so on and so forth.

Then  the  question  that  we  are  asking  here  is,  if  we  allow  this  weak  exchange  the

composite system will move from this less probable, less probable state, when it has had

a probability equal to 0.14 to some other macro state. So, in which direction will it go. It

is going to go towards the direction that increases epsilon A and decreases epsilon B.

now when will it stop; obviously, we understand that this process will stop, only when

the energy epsilon A is equal to energy epsilon B. This is a total energy of the some

compartments A and B respectively.

Now, if we go back and look at the probability distribution once again for the system,

that we are talking about. Therefore, all we are saying is. If I start from a system like this,

then I am going to ask the system is allowed to exchange energy. I am going to go

spontaneously in this direction increasing epsilon A and; obviously, decreasing epsilon B

at the same time. And where will I stop. I will stop when the energy is epsilon A and

epsilon B are equal. Under what condition will these two energies be equal; that is when

epsilon A equal to epsilon B equal to 3.

Now, interestingly what we find is that, it is this condition where the distribution of P

epsilon A is associated with the maximum number of microscopic states, or this is the

most probable macro state of this composite Einstein solid, this then can be very easily

concluded that. Well the composite solid on being allowed to move interact weakly over

long times of long periods of time. It will move towards that state that is associated with

a maximum number of microscopic states.

And we can also conclude that the final equilibrium state will  be that of the highest

probability. Now which equilibrium. If the equilibrium state has the highest probability,

it must be associated with the largest number of microscopic states. And according to the

Boltzmann hypothesis, if you have a macroscopic state that is associated with the largest

number of microscopic states, then that must be the macro state having the maximum

entropy.



So, now we see the different loop points started converging in one direction. So, what I

had. Was I started off with a block of solid? It is a macroscopic block of solid subsystem

A,  is  still  macroscopic  subsystem B,  is  still  macroscopic,  and  I  am saying  that  the

energies of epsilon A and epsilon B can have discrete quanta values. Like epsilon A can

have values  from 0 1 2,  up to 6.  And since epsilon A plus epsilon B is  equal to 6.

Therefore, automatically the values of epsilon B are fixed accordingly ok.

Then I said to start with. I prepare my system in such a way that epsilon A is having

energy of 1 quantum. Epsilon B is having energy 5 quantum, and then I allow these two

systems to  exchange energy vary slowly, when the  exchange energy;  obviously, you

understand that there initial equilibrium state is disturbed. So, your question would be

what will happen to these macroscopic bodies, when they try to attain a new equilibrium

state then I have. As I said that the compartment having the higher energy will try to

provide some energy to the compartment which is having the lower energy.

So, the spontaneous change in state is going to be the one, where the system passes on

thermal energy in the form of heat from the region of higher energy to the lower energy.

Here as you see, and then equilibrium is reached when there is no more such heat flow.

So, this we find, is this process, or the attainment of the equilibrium to be associated with

attainment  of  that  macroscopic  state;  that  is  associated  with  the  highest  number  of

microstates, and this is exactly what the Boltzmann hypothesis was trying to tell us.

The equilibrium state in an isolated system, when it has undergone some internal change,

some constraint, internal constraint has been removed. It will readjust itself and settle in

a new equilibrium state; such that its entropy is maximum in terms of the microstates.

We find that this new equilibrium is associated with a maximum number of with a state

associated  with a  maximum number  of  microstates.  Therefore,  we justify the  use of

Boltzmann hypothesis, saying that well S is equal to k B l n gamma. So, at equilibrium

when gamma is maximum, I understand at the same time S is also going to be maximum.

So, as we see that by introducing the Boltzmann hypothesis, they are not violating any of

the  concepts  that  we  are  familiar  with  from  our  previous  experience,  with

thermodynamics. Let us go move and go to one step further.
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And say that. Well what happens when both the number of particles and the quanta of

energy available to this Einstein solid composite Einstein solid. Both of them are very

large.

Then what find is once again we have work this out in some previous lecture, that this

becomes a very sharp distribution right. So, the number of possible values of epsilon A is

going to be a very wide range, and we have already seen that. Then the probability peaks

around some value depending on the kind of system that you have. And the probability

of being in a state characterised by some value of epsilon A much different from this

peak position is vanishingly small. 
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So, what is it that we are concluding from here we are concluding that, that is exactly

what is to be expected from the Boltzmann hypothesis?

Now, let  us revisit the Boltzmann hypothesis is once more, and try and see that if it

matches with other concepts that the concept of heat flow from one region of the system

to the other, and this is how we propose to do it. Now given this composite Einstein

solid, I would say that the probability that the subsystem A has some energy epsilon A is

given by this probability P.
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And this is equal to gamma A epsilon A into gamma B epsilon B divided by gamma total

E. We have seen before how to calculate this quantity P for a given value of epsilon A

and epsilon B, and an given number of particles.

Now, please remember that epsilon A plus epsilon B once again is a constant. Now we

can once again say that at equilibrium this probability. And hence the natural logarithm

of this probability must exhibit a maximum with respect to epsilon A if that is. So, then I

can very easily say that if I write down what l n P is l n P is going to be l n gamma a

gamma total epsilon.

So, in order to find out the condition under which this l n P exhibits. So, maximum what

I can do is. I can take a derivative of this l n P with respect to del epsilon A, keeping

epsilon  A plus  epsilon  B  constant.  And  not  only  that  the  volume  of  the  system  is

constant, and the total number of particles is also constant, and the result is going to be

given by a condition like this. So, basically what you are saying is as follows. So, del l n

P del epsilon A; that is going to be equal to del l n gamma A which is a function of

epsilon A divided by dell epsilon A plus dell l n gamma B which is a function of epsilon

B divided by dell l n dell epsilon A. As you see that this number is fixed for given total

energy volume and number of particles. So, that is not going to vary with epsilon A. So, I

have not written this number, but please remember that I already have this restriction on

the system. Therefore, I can very easily write down that del epsilon B dell epsilon A that

is equal to minus 1 right.

And therefore, this expression now turns out to be del l n gamma a del epsilon A minus

dell l n gamma B, which is a function of epsilon B divided by dell epsilon B and for l n P

to have a maximum with respect to epsilon A, this must be equal to 0. This means these

two  terms  here,  and  here  must  be  equal  when  the  maximum  appears  and  that  the

condition then of equilibrium, that this particular quantity that I have shown here which

is a derivative of the log of number of microscopic states in the subsystem a, that must be

equal to the corresponding quantity for the subsystem B.

Now, what does it mean is this, something that we would physically expect the answer,

actually is very simple. Now look at what we can know from introducing some quantity

T. So, let me say that this temperature t is related to this derivative, as I have shown in



the context of the equilibrium condition. Then what is the equilibrium condition. The

equilibrium condition now turns out to be that 1 by Ta is equal to 1 by T b ok.

Now, this means that what I am talking about, is the fact that if entropy is k B ln gamma.

In that case what I have is. I am taking a derivative of this l n gamma with respect to

energy, and I am coming up with some kind of a parameter temperature. Now if S is

related to this, what is the derivative of entropy with respect to energy. If you remember

that in the case of. Well while we talked about the thermodynamics in an isolated system

dell S dell U V N, this is equal to 1 by T. So, what is T. There T is a temperature.

So, now what I see here is that, if I look at this derivative these two derivatives become

equal to each other with respect to these subsystems a and b. So, now, this is a post

justification of the existence of a relationship like this. Now let me repeat the kind of

argument that I have been trying to post here. First of all I said that there are two parts of

an isolated system. I remove some kind of an internal constraint and allow the system to

undergo a change in state. So, that it spontaneously goes to a new equilibrium state.

The new equilibrium state is going to be the one associated with a maximum number of

microscopic states, then I said, fine. Now I understand in terms of the microscopic states,

I  should  be  getting  the  condition  in  terms  of  the  fact  that  dell  l  n  gamma  for  the

compartment A dell epsilon A that must be equal to dell l n gamma B to compartment B.
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So, basically the equilibrium condition now depends on dell l n gamma dell epsilon this

derivative, but if in the real world if you have an isolated system, and then you allow

exchange of energy between the two compartments when will the composite body at in a

new  equilibrium  when  the  temperature  of  the  system  is  uniform  throughout  and

therefore, if and only if this quantity can be mapped onto the real physical temperature,

you can say that whatever we are say saying. So, far has some logical implication.

Now, if that is. So, if I define this as some kind of a function of what I call say I call it

theta right then the presence then I understand that this theta is related to dell epsilon of l

n gamma. Now I know that temperature 1 by T is equal to dell S dell U V N. Therefore,

this quantity has to be related to entropy. So, that theta can be the quantity related to

temperature and that is exactly what has been shown in this slide, it says that if I allow

energy exchange they will attain a thermal equilibrium at thermal equilibrium you must

be having temperature of subsystem A and equal to the temperature of the subsystem B.

And then here you have  shown that  equality  of  these two quantities  determined the

equilibrium between the subsystems A and B. Therefore, this dell l n gamma dell epsilon

must be related to the temperature and if that is. So, then by retracing my route back I

would say that l n gamma this quantity must be related to the entropy of the system,

because del S del U is related to the temperature of the system.

So, now that we have discussed the basic principles of statistical mechanics and I have

shown to you how you justify using especially the Boltzmann hypothesis. From the next

lecture we will go straight ahead and think of ensembles of collections of microscopic

states  in  a  given  system,  in  a  given  thermodynamic  state,  and  try  to  derive  the

thermodynamic properties starting from the microscopic Hamiltonian.

Thank you.


