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Welcome back to the last part of our discussion on how to identify and count the possible

number of microstates of a system in equilibrium. So, the first thing that I would like to

mention here is  that we are looking at  the microstates  of N identical  non-interacting

particles.
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Whereas this particles can be a cluster of electrons or a cluster of atoms or it may be

some gas molecule comprised of say a diatomic molecule and it may so, happen that we

are looking at a liquid or a solid which is comprised of much more complicated multi-

atomic molecules.
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And the question that we are we have been asking in the last class, was that is it possible

to identify some of this quantum particles in terms of the fermions and bosons. So, what

is the difference between the fermions and bosons, the fermions are the ones where no

single particle state can be occupied by more than 1 particle. And this means that the

occupation number of every single particle state can be either 0 or 1, and we have also

demonstrated that electrons are the examples of such fermions.

The other class of particles that we were talking about were bosons, where unlike the

fermions there is no restriction on the occupation number of a single particle state and

therefore, this occupation number may vary from 0 1 2 and so on and so forth. And the

examples  that  we  consider  are  photons  or  the  light  the  quantum  of  energy  for

electromagnetic  radiation  with  bright,  and  phonons  that  is  the  quantized  vibrational

modes of solids.

Now, with this background in mind today what we are going to do is we are going to talk

about counting of the numbers of microscopic states of systems that are comprised of N

non-interacting identical particles ok.
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So, the let us try to address this problem of the counting of microscopic states by using

what we mean by a ball and pellet model.
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So, let us try and understand the number of ways, in which N balls may be arranged.

Now for the sake of simplicity I will be taking N is equal to two. So, I just have 2 balls

and there are some rules of this game, the rules are as follows at the most. So, I have a

single box in which I am going to arrange this balls and at the most 1 ball can be placed

in each box and empty boxes are not permitted.



So, now what I have here is I have this big box in which there are 2 compartments, and

in these 2 compartments I can put only 1 ball each. So, that is the rule of the game I

cannot leave any of this sub- compartments in my box empty. Now I have numbered here

my balls as number 1 and number 2 then; obviously, you will be able to say that well

these are the 2 ways in which I can arrange the balls, and what are these ways.

The first 1 has ball number 1 in the left side compartment, and ball number 2 in the right

side compartment, in the second arrangement I have in the left side compartment ball

number 2 which was in this case in the right side compartment I will have ball number 1

in the other 1. So, it is understood that for capital N equal to under the rules of these rules

of the game these are the two ways in which the balls can be arranged.

And if I now remove the identifying number on the balls, now what do I see under the

same rule of the game that I can put 1 box in each of these compartments, and no empty

boxes permitted I see that these 2 states, now go over to these 2 states. Now can you

distinguish by looking at these 2 states whether they are the same or different; obviously,

your answer would be if you cannot distinguish between the individual particles given

the situation, and given the rule of the game. If I say that I am having 2 different ways I

shall be over counting, and why am I over counting that is simply because the 2 balls are

identical and here therefore, the correct number of ways in which these 2 identical balls

can be arranged in the box comprised of 2 compartments following these rules of the

game is 2 is 1.
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Now, let us now have the other case where I have 3 balls to be arranged, in 1 box which

has 3 compartments. And the rules of the game remain the same now in this case once

again  so,  this  is  my  first  case  this  is  my  big  box  which  has  3  equivalent  sub

compartments.

I was supposed to put in the balls numbered as 1 2 3 in them in all possible ways so;

obviously, it is very easy you can play around and find out the number of ways, in which

you can arrange this balls which are labelled as 1 2 3; obviously, there are 6 possible

ways and therefore, if you look at this kind of picture you will say that if I have 3 such

distinguishable particles, then the total number of ways in which these 3 particles can be

arranged is 3 factorial which is the number 6. And these are the 6 possible arrangements

that I have shown to you.

Now, once again let me remind you that we are dealing with identical particles therefore,

what I would like to do is I would like to have a look at these states, these ways of

arranging the balls when I remove the identifying number and this is what happens.
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So, once again I find that the different arrangements without the numbers are absolutely

the same, therefore if you now say that that there are six different ways of arranging

these 3 balls in that box comprised of 3 compartments. Once again you are over counting

and therefore, I would say that all of them are identical.
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And then what I must be doing is following these rules of the game I must understand

that there is only 1 unique way by which I can arrange these 3 balls. That is 1 ball in each

compartment. So, what is the number of ways in which these N balls may be arranged, so



you see that this number turns out to be 1. Now the question is it possible that I find out

what would be this number corresponding to this particular value of N, I understand that

this number can be written as 3 factorial divided by 3 factorial, because 3 factorial is the

total number of ways in which this particles if I could label them as distinguishable then

they would have arranged ok.

So,  instead  of  1  I  would  have  got  6  distinguishable  ways  therefore,  in  general  a

prescription is followed that if you have your rules of the game are something like this.

Then you must  say that  in  general  you construct  as  many microscopic  states  of  the

different ways in which these balls can be arranged, but you divide by N factorial to

avoid the over counting of microscopic states.

We are going to use this concept later on, but there are 2 ingredients that you must be

aware of that we are using here. First of all as it follows from our previous discussion

that we must be concerned about first the box that is 1 energy state at the microscopic

level,  where  I  am putting  the  particles  to  construct  the  actual  representation  of  the

microscopic state of the system.

Therefore the number of microscopic states will definitely depend on, the number of sub-

compartments  that  this  big  energy box has,  it  also would  depend on the  number  of

particles that I have in my system, which I assumed to be not interacting with each other.

They are identical and then I must also remind you that there is a rule of the game. And

the rule of the game is decided for example, I have shown you 1 rule of the game the

other 2 rules of the games are corresponding to how you can populate fermions and

bosons in their respective single particle states.

So, let us now go back and have a look at the different ways in which fermions and

bosons can be arranged.
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So, once again let me highlight the fact that whenever we are dealing with fermions and

bosons,  then  I  must  remember  that  the  occupation  number  in  each  of  the  some

compartments in the box must be greater than or equal to 0 and in this case just, because

0 appears the rule of mind game includes empty boxes means the sub-compartment if I

have a given box 1 of the sub- compartment of the box may be empty; that means, the

occupation number of that box that sub-compartment may be equal to 1.

Now, with rule in mind let us go back, and now check out what happens when we talk

about say 2 particles and 1 single particle state.
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So, once again just like before I am going to use the balls to represent my particles;

obviously, this is an approximate representation and is being used for the sake of our

understanding.

Now, to start with I have labelled this balls as 1 and 2, and the task is I have to put them

in 1 single particle  state,  which  means  that  I  have  1 such box and there  is  no sub-

compartment in this box. So, this is; obviously, 1 of the ways in which you can put the 2

particles in this box this is the first case where the box is empty you have not put any of

the balls here so, here N is equal to 0.

The next thing that you have here is the other situation, where you have taken only wall

number 1 and put it in the box so, this must be N equal to 1. There is another option for

getting that N equal to 1 that is instead of the wall number 1 you put the ball number 2.

And just because they have these numbers associated with them you understand that this

state is different, from this state even if they have hold the same occupation number.

Now, let us have a look at the third option where I have shown you the only possible

state with the occupation number N equal to 2. Now here as you see that both the particle

1 and particle 2 have input simultaneously in the box. Now as I understand that here

what  I  am doing is  I  am putting  no restriction  on how many particles  can  be there

populating this single particle state.



Therefore it is obvious that these are different arrangements without any restriction for 2

particles in 1 particle state; 1 single particle state. Now if I remove these numbers this is

exactly what you get. So, what you find is; obviously, this remains the same this also

remains  the same,  but  now I have this  problem that  both these states  are  absolutely

identical. 

So, therefore I must understand that whenever I am using these 2 particles and they are

identical to each other, then I must be having instead of the 4 possible states that I have

shown here only 3 states because you cannot distinguish whether you have put in particle

number 1 or 2 in this box. And therefore these 2 states with occupation number they are

equivalent  and  therefore,  you  can  see  that  the  microscopic  state  of  these  identical

particles can be completely characterised by saying what is the occupation number of

that given single particle state.
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Let us now look into a little different rule of the game, where I am going to use different

conditions for the values of N, and when did we see this different rules in the case of

bosons and fermions. So, let us first have a look at what are the possible ways in which

you can represent the microscopic states of bosons so; obviously, in the case of bosons N

is going to be greater than or equal to 2 for 2 identical to bosons. 

And therefore, the permitted microscopic states are the 1 with N equal to 0, the 1 with N

equal to 1, and the 1 with N equal to 2 right. Now, if I think about the fermions now what



is the rule of the game of fermions in the case of fermions no single particle state can

have  more  than  1  particle.  So,  in  this  case  for  the  case  of  fermions  the  occupation

number N must be either  0 or 1.  So,  correspondingly I  must be having this  kind of

allowed microscopic states for the fermions. 
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Now this way we can go ahead and try and understand what happens for example, if I

have 2 bosons, but 3 single particle states now these are the possibilities. So, what I have

is I have this given box which corresponds to a constant energy of that single particle

state.  And  this  single  particle  state  is  triply  degenerate,  which  means  there  are  3

compartments which are equivalent to each other. And we are required to distribute 2

bosons in these 3 compartments, and then I would say that well these are bosons and

therefore, in this case what is going to be my occupation states; my occupation states, are

going to have values like 0, 1 or 2 for every single particle state.

Now, in this case why do I stop at 2 because that is the maximum number of bosonic

particles that I have in this example. So, can you identify amongst all these in which the

leftmost compartment has an occupation number equal to 0; obviously, this structure this

microscopic  state  are  the  ones  where  this  leftmost  sub-compartment  is  having  an

occupation number equal to 0.

Now, can I find out the microscopic states of the bosons where the occupation number is

equal to 1, in the left most state; obviously, this microscopic state and this microscopic



state  has  n  equal  to  1  form this  left  most  sub-compartment  and;  obviously, if  I  am

looking  for  those  states  where  n  is  equal  to  2  for  the  left  most  compartment,  this;

obviously,  is  the  case  where  the  left  most  compartment  is  having  both  the  bosons

associated with it.

So, now this tells us that if I have a specific rule of the game whether it is a boson or it is

a fermion, and I have a given number of single particle states is possible for me to just

play around with this balls and given the number different compartments in which I place

them, and provided this compartments are equivalent to each other in the sense, that all

of them belong to the same single particle state I can generate the different microscopic

states of the system. Now, let us next look at what happens to the fermions.
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So, now I have 2 fermions and 3 single particle states. Now in the case of 2 fermions I

already know that my n value that can be only equal to 1. Now let us have a look at what

happens if  I have 2 fermions and 3 single particle  states,  now for the fermions you;

obviously, know that for any compartment so, let us now consider the case where I have

2 fermions and 3 single particle states. Now in this case what happens as you understand

that so, let us now consider a system where there are 3 single particle states and I have 2

fermions to be put in it. Now this is why I have the picture showing you that there are

there is 1 big box which signifies at the total energy of the system is constant. 



And for this constant total energy there are 3 single particle states as given by this 3 sub-

compartments, and following the rule of game for the fermions I am going to allot 2

fermions to each of these compartments, and in this case I realise that I must be having

occupation number of each sub-compartment either equal to 0 or equal to 1 right.

So; obviously, if I have to follow this rule I understand that some of the states that I have

shown here are not possible can you tell me what they are; obviously, I can very easily

show  that  the  first  3  states,  where  you  have  in  each  of  the  sub-compartments  the

occupation  number  of  2  are  not  possible  for  the  fermions.  So,  for  the  fermions  the

possible microscopic states are these 1 2 and 3.

Now, can you identify the microscopic state that is having N equal to 0 for the central

compartment of course, this is the 1 where there is no particle in the central box. So, this

is the microscopic state for which N is equal to 0 at this central compartment. Now think

about the microscopic state of these 2 fermions system where the right most state is

empty so; obviously, this is a microscopic state which has the right most state right most

box empty.
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So, now the question is these are actually very simple systems where I have been using

accountable problem, in the sense that I have some 2 fermions 3 single particle states and

so, on and so, forth. But actually the problem comes when you have a very large number

of particles, we have repeatedly seen in this course that we are going to talk about a very



large number of particles. And equivalently there may be a very large number of single

particle  states  available  to  them,  where  we  are  going  to  populate  these  particles  to

construct the single particle states.

So, let us now have go and have a look at what happens if I have capital N fermions to be

distributed to small g single particle states to generate the different microscopic states of

the system. And therefore, the task right now is I have this big box where I have 1, 2, 3

such a single particle states, and I say that I am going to allot these let us say 2 balls into

these compartments, this is the specific case where capital N is equal to 2 and small g is

equal to 3.

And I also know that typical microscopic state of the system may be generated like this,

where I have assigned 1 ball each to these compartments leaving the left most empty, but

at this point we are asking the question under the condition that the number of single

particle states is greater than or equal to the total number of fermions available. Can I get

the general number where I can say that well if you have g single particle states, and you

have N fermions to be distributed over them what is the number of microscopic states

that  you  will  be  generating  and  this;  obviously,  is  the  answer  as  you  see  that  you

basically  have  2  choose  the  number  of  ways  in  which  you can  distribute  capital  N

particles in small g boxes. So, this is g C N. and if I write down the explicit expression;

that means, g factorial divided by N factorial in to g minus N factorial, and appearance of

this term actually justifies the fact that I must be having this condition fulfilled. Now, let

us check if these numbers give me the right kind of answer, when I have capital N is

equal to 2 and g equal to 3.
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So, when I have capital N equal to 2 and g equal to 3, then the number of micro-states

that are possible is given by 3 C 2 right, and this is nothing, but 3 factorial divided by 2

factorial into 1 factorial and this is equal to 3. And we have already seen that these 3

states are like these so, this is the microstate number 1, this is the microstate number 2,

and this is the microstate number 3.

So, the basic idea here is I am going to use this kind of ball and box representation to

generate the different microscopic states possible for this system. Now let me go back

and  then  mention  that  this  kind  of  counting  of  the  number  of  microscopic  states  is

attributed to what is known as Fermi-Dirac statistics, Fermi and Dirac both are highly

celebrated name in the world of physics, and this particular equation is the elementary

starting point in which they started dealing with the properties of fermionic systems.

The next question that I have is  can we have a similar counting prescription for the

bosons.
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So, in the case of N bosons and g single particle states, now I have let us say that these

are the balls the blue balls represent some this bosons, and in this case I am using 1 2 3 4

5, five an identical blue balls to represent the bosons here. The g single particle states I

am going to represent using g minus 1 pellets. So, this is pellet 1 2 and 3 and I am going

to use this  big box once again which tells  me that  the total  energy of the system is

concerned, and then how am I supposed to construct a typical microscopic state of this

system using these balls and these pellets  in this box. So, this  is how I generate  the

different microscopic states.

So, as you see that I have subdivided this big box into 1 2 3 4 four compartments. And

so, 3 pellets give me 4 compartments, and then this reminds you of the kind of situation

that we had to start with that I have this big box, and then I am placing separators here in

the form of the pellets. So, if I have 4 single particle states what is the number of pellets

that, I will have the number of pellets that I will have is equal to 3 ok

Now, I have put an of these 5 balls in these different sub-compartments created by the

pellets. Now as you understand that these are bosons and therefore, you do not have any

restriction on the number of balls that you can put in any of this compartments therefore,

the problem now is you have been given g single particle states. And this g single particle

states are separated from each other using g minus 1 pellets, and then you will have to

have capital N balls.



So, a total number of g plus N minus 1 symbols are available to you and you are going to

play around with all possible permutations of the symbols, but you must realise out of

them capital N are your blue balls and g minus 1 these are your pellets therefore, what is

the number of distinct microscopic states for a given system like this and this; obviously,

is given by g plus N minus 1, whole factorial  divided by N factorial  into g minus 1

factorial. 

And this  is  the starting result  for  counting the number of  microscopic  states  for the

celebrated Bose Einstein statistics named after the famous Indian physicist  Satyendra

nath Bose and the world-renowned physicist Albert Einstein. So, but you have seen this

results before do you remember where you have seen this result before.
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You have seen it where we have been counting the number of micro-states of an Einstein

solid.  And here as you see that  we are basically  using the  same counting procedure

because in an Einstein solid you would remember that what you the way you represent

the solid is a collection of simple harmonic oscillators where the atoms are present at

different lattice positions connected by springs.

And you say that these springs vibrate in such a way that the net vibrational pattern of

the solid can represented as a total N simple harmonic oscillators which are independent

of each other. So, we are talking about N bosons, and the collective vibrational pattern,

that you get the number of microscopic states that you get are those of the quantized



vibrational modes. And therefore, you can use the Bose Einstein statistics to find out the

number of micro-states possible. 

So, that concludes our discussion on the counting of number of microscopic states in a

system comprised of non-interacting identical particles. We will now go over and discuss

the fundamentals of statistical mechanics that relies crucially on whatever concept we

have learned so far.

Thank you.


