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Lecture - 11
Microstates of a System (contd.)

Welcome, today we are going to continue our discussion on the microscopic states of a

system  in  equilibrium  and  this  is  a  continuation  of  our  discussion  on  how  many

microscopic states are associated with, for example,  a system comprised of capital  N

perhaps particles that we have already discussed. 
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Now in today’s lecture, what we are going to do is, we are going to talk about once again

the  microstates  of  capital  N  distinguishable  non  interacting  particles,  but  in  today’s

discussion we are going to talk in terms of, one dimensional simple harmonic oscillators.
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Now, let us see, what the microstate of an Einstein solid is. So, what is an Einstein solid,

an Einstein solid is a collection of capital N simple harmonic oscillators, which has a

specific total amount of energy which is given as epsilon. So, I have a block of solid with

a given volume that is comprised of capital N particles, each of these particles is a simple

one dimensional simple harmonic oscillator. Each of them is characterized by an angular

frequency  omega.  So,  as  you  see,  that  these  oscillators  are  being  assumed  to  be

distinguishable and they do not interact with each other. Any such solid that is being

modeled,  in  this  way is  labeled  as  an  Einstein  solid,  in  the  name of  the  celebrated

scientist.

Now, let us see, if such a simple model of solid can give us some information regarding

the possible microscopic states under the given condition that the solid is present at the

given total energy. When we go back and have a look at what happens with any such

system this is the typical pictorial representation of a block of solid, which is comprised

of here as in this picture 12 simple harmonic oscillator which by our assumption of the

model will have, all of them will have the same angular frequency omega and they do

not  know how much  if  the  other  exists  in  the  sense  that  all  of  them behave  as  an

independent simple harmonic oscillator and it is also important to note to that the total

energy of the system is given by epsilon units of quantum quantized energies.



In order to understand what it means, let us go and try to see what I mean by these

epsilon units of quantized energy. Now for every simple harmonic oscillator, let us say

the energy is given by this epsilon plus half this whole thing into h cross omega. So, how

much is the 0 point energy of this oscillator half h cross omega? Therefore, this system

has epsilon times h cross omega units of energy over and above the 0 point energy.

Since all of the oscillators will be having a same 0 point energy having the same angular

frequency, we can assume it to be the 0th level of energy and therefore, whatever energy

the system possesses over and above the 0 point energy is what we are going to be

interested in for the rest of our lecture.
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So, let us go and try and have a look at for this system, how do I find out the number of

microstates, given that there are capital N simple harmonic oscillators with epsilon unites

of quantized energies. We have already covered this and we now know that the number

of  microstates,  they depend on the quant  of  energy available  that  is  epsilon and the

number of particles present in the following way.

Now, we have also discussed that what is the typical way of representing each of the

microstate possible for any such system, so let us say that every quantum of energy the

over and above the 0 point energy is represented in terms of a red pellet and I am going

to use black walls to separate out all the particles, all the N particles that present in the



given volume. So, how many walls would you require, to set N particles, obliviously N

minus 1 walls.

So, if you look at the corresponding example of N equal to 3 and epsilon equal to 2 what

I find is these are the some of the typical microscopic states, where and we will playing

around with a total of 3 plus 2 minus 1, 4 symbols. In this case 2 pellets, 2 red pellets and

2 black walls and its possible too, then find out what is the number of microscopic states

for different systems.
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So, if I fix capital N equal to 3, then I find that for epsilon equal to 1, these are the

possible microscopic states and correspondingly I would be able to say, that gamma the

number of microscopic states that is associated with capital  N equal to 3 and epsilon

equal to 1 is 3, because I am taking into account 1, 2, 3 these 3 microscopic states.

Now, if I go further and I have 2 quanta of energy to be distributed to the system of 3

simple harmonic oscillators,  these are the microscopic states possible.  So, as you see

that,  how many states are possible corresponding to capital  N equal to 3 and epsilon

equal to 2. 1, 2, 3, 4, 5 and 6 therefore, I would write that the number of microscopic

states associated with an Einstein solid where capital N is equal to 3 and epsilon is equal

to 2, is 6.



Now, what do I conclude from these data, the conclusions we have already done and we

have already learned to the basic principle. So, the first conclusion is, if a given value of

epsilon is specified, then all the microscopic states are equally probable. 

So, what it means is, if I look at this particular case, I see that for epsilon equal to 1, I

have 3 possible microscopic states. Now, is there any reason why one of the, this is v 2

and this is v 3. So, why any of the microscopic states are going to be any different from

each of the other, the answer is, we do not have any information on that. So, a priori we

are going to assume that all the 3 microscopic states are equally probable.

Now, if I consider this case with this case what is the difference between the 2 total

energies, this is the higher value of energy and then you say that look at the number of

microscopic states possible, here I have 3 microstates possible, at the higher value of

energy, I have 6 microstates possible. So, I conclude, that if I increase the amount of

energy available that is for larger values of epsilon, I will lend up with a larger number of

microstates for a given value of epsilon.

Once we have revised what we have done before, then we can go ahead and ask this

question that what is going to happen to the number of microstates, when I have a very

large number of particles and sufficiently large amount of energy.

(Refer Slide Time: 09:10)



So, let us next address the question of microstates of an Einstein solid with large N and

epsilon, so once again I see that, this is an equation that we have seen before and now

since capital N is so large I can say that capital N is approximately equal to N minus 1.

Obviously, you understand that if you take 1 away from a number like 10 to the power of

20, it does not make any difference; rather you would say that it is I am still in the range

of 10 to the power of 20. So, that is the reason why we can write an equation like this.

Now, once we have done this, I understand that whatever number I am dealing with these

are very large numbers. So, I can use the Stirling’s approximation, do a little bit algebra

and this is what I am going to get. I have got the natural logarithm of gamma that is the

number of microscopic states possible for this Einstein solid in terms of the large number

of simple harmonic oscillators that constitute this solid and the epsilon the quanta of

energy available to the system over and above the net 0 point energy of the system.

Now, if I consider this condition, that N by epsilon is much much greater than 1, then it

is possible to rewrite this expression as gamma equal to this number to the power of n.

Now as you see that in this case, this is a limiting behavior where I have both N and

epsilon large, but here I have assumed that well, the amount of energy available is such

that this ratio will always be greater than 1. In that case this algebraic simplification is

possible  and  I  leave  it  you  to  work  it  out  as  to  how  you  arrive  at  this  algebraic

simplification.

Now, what is it tell us, it tells us that if capital N is large, in that case gamma is also large

and if I introduce small changes in the values of epsilon or N there will be a very large

change in gamma and that is because I have this very large exponent over here, which is

controlling the how the number of microstate is going to respond to the small changes in

either epsilon or capital N.

So, what we have learn from here already is that, for a given value of total energy of the

system and Einstein solid which is comprised of capital N non interacting distinguishable

simple harmonic oscillators, they are going to have a very large number of microscopic

states associated with that given value of total energy epsilon.

Now, I am going to take up, some very specific example which is an extension of this

and this extension is to describe, still once again we are going to talk about a block of

solid, but now this solid is a composite Einstein solid.
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So, let us have a look at how it, what exactly the system that I am considering here. So,

here I have this big black box, which tells me that I have a constant volume, in which the

solid is placed and the solid now is separated into two compartments, one is what I call

the subsystem A and the other one is what I call the subsystem B.

Now, in  this  case I  still  assume that,  there are  a  total  of capital  N simple  harmonic

oscillators and the total energy of the solid, the block of solid which is the sum of the

subsystems A and B that is epsilon, but now just because I separated the entire system

into two subsystems, I need to describe the number simple harmonic oscillators that I

have in the subsystem A and the associated quanta of energy that they possess.

And similarly I also have N B as a number of simple harmonic oscillators present in the

subsystem B with energy epsilon B. So, as you understand that since the entire block of

solid I am going to maintain at a constant energy volume and number of particles, I must

be having these two mathematical condition satisfied that the number of simple harmonic

oscillators  in  the subsystem A and the number of  simple harmonic  oscillators  in  the

subsystem B must add up to the total number of simple harmonic oscillators. Similarly

the energy of subsystem A, plus energy of subsystem B must add up to the total amount

of energy available to the system.

So, pictorially if I consider the example, that I have already taken what I have done is I

have just picked up these 4 oscillators and put them in the subsystem A and the rest of



the 8 oscillators that I can see here, they now belong to subsystem B. So, in this case N A

is equal to 4 and N B is equal to 8.
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Now, the next thing that we ask here is under these 2 restrictions what are the possible

values of N A and epsilon A, if we have specified the total number of simple harmonic

oscillators and the total amount of energy available to them, we would also like to ask

the question, what is the number of microstates in subsystem A, if you assign epsilon A

sum value and N A sum value, but please remember that these two values are always

controlled  by these two equations  and finally, we would like to know how does  the

distribution of the number of microscopic states in the subsystem A look like when both

N A and epsilon A are very very large.

So, you see that we are trying to understand the same issues that we raised, when we

talked about the spin systems. So, let us take these questions one by one and try to see if

the conclusions, that we derived in the case of the spin system is general enough and

applies to the simple harmonic oscillator system as well.
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So, let us, next have a look at, what happens to a composite Einstein solid that has, that is

comprised of capital N simple harmonic oscillators, with a total energy of epsilon and the

question that we ask is, what are the possible values of N A and epsilon A.

Now, as you see that in this case I am going to assume that capital N, for the sake of

simplicity is equal to 6 and I am also going to assume and I am going to leave this fixed.

Now let me assume that epsilon is equal to 6, when the sum of the 2 energy is the epsilon

A and epsilon B are fixed, then what I find is that I must now the 2 constraint equations

that I have must look like epsilon A plus epsilon B equal to 6 and N A plus N B equal to

6.

So,  it  is  just  an  example,  where  I  am now  going  to  calculate  the  total  number  of

microstates possible. As you see that, here I can very easily find out for the entire solid

the total number of microstates and that you can very easily show it to be 462, this is

something  that  you  already  know. But  what  is  knew  here  is  as  follows,  these  462

microscopic  states  these  are  now  describing  not  all  the  capital  N  simple  harmonic

oscillators together, because of the introduction of the subsystems A and B now I have

different macro states possible corresponding to each of the subsystem.

Now, since let me say that here epsilon A, plus epsilon B is all a constant. Therefore, I

can  vary  only  one  variable  like  epsilon  A from a  minimum  permissible  value  to  a

maximum permissible value and the values of epsilon B will automatically be defined in



accordance  to  this  equation.  So,  how  many  such  macro  states  are  possible  for  the

subsystem A, as you see that the subsystem A has 7 different macro states.

So, under the condition of a constant number of particles and the given value of a total

energy of 6 units, you can see that these 7 macro states are possible and there will be

many  microstates  possible  for  say,  epsilon  A  equal  to  0  or  may  be  some  other

microscopic states associated with epsilon A equal to 5. If  I sum up all  the possible

microscopic states for each of these macro states, I am going to retrieve this number 462.
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But here, there is something more that I need to consider about this composite solid and

that is as follows.

So, in this example we very easily can say, that well the number of microstates for the

subsystem a can be obtained by saying that well this is epsilon A plus 2 factorial divided

by  epsilon  A  factorial  plus  2  into  2  factorial.  Now  I  can  generate  the  different

microscopic states, there are 7 of them by changing the value of epsilon A keeping in a

fixed at 3, if I do that, then this is what I would get. So, for epsilon A equal to 0, what is

the number of microstates associated with gamma A here, given N A is equal to 3, that is

1. So, epsilon A equal to 1, gamma A .
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Well we can work it out very easily, that if N A equal to 3 and epsilon A is some given

value, we have already seen that gamma A that is going to be given by epsilon A plus 2

factorial divided by epsilon A factorial, then 2 factorial.

Now, I have taken epsilon A is equal to 1, if that is so, then gamma A is going to be 1

plus 2 factorial divided by 1 factorial into 2 factorial. So, this is 3 factorial divided by 2

factorial and the answer is obviously, 3. So, this way I can find out what the different

number of microscopic state is associated with a given value of epsilon.
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So, now we can generate all possible values of epsilon A and estimate the corresponding

values  of  gamma  A.  So,  the  final  value  would  be  epsilon  A  is  equal  to  6  and

correspondingly the number of microstates possible with N A equal to 3 is 28. Now once

I know this, then obviously, I can generate the corresponding values of epsilon B and the

associated number of a microscopic states, now this is a symmetric system, as a result of

it I have assumed that N A is equal to N B is equal to 3. 

And therefore,  I  see that  with complimentary  energy value skipping the total  energy

equal to 6, I get when gamma A is equal to 1, then gamma B is equal to 28 because

epsilon A and epsilon B they add up to 6 and the same happens the equivalence situation

happens if I look at the other extreme.

Now, at this point the other quantity that is of interest is the total number of microscopic

states possible, which tells me what is the number of microscopic states associated when

subsystem has energy epsilon A and the subsystem B has the energy epsilon B. Now

since A and B, these are 2 subsystems which are not interacting with each other, then

following the principles of probability, I would say that this is the conditional probability

that the subsystem A has some specific value of the energy epsilon A and at the same

time the subsystem B has an energy equal to epsilon B and since they are independent of

each other, therefore, I must be having gamma A comma B that is equal to gamma A into

gamma B. 

So, using this principle we can now find out what these values are. So, now, what I have

here is the complete description of all the 7 macro states associated with the subsystem A

and the corresponding number of microstates associated with each of them. So, you see

that for the lowest value of epsilon A, I have gamma A B equal to 28 and the highest

value of epsilon A, once again the gamma value is 28. So, what happens in between is

the gamma A B value goes on increasing from 28 to 63, 90,100 and then falls of exactly

in the same way to 28.
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Now, if I go little further I understand that in this system, I know what the total number

of microstates are and therefore, if I divide this gamma A B by gamma total what I am

going  to  get  is,  what  is  the  probability  that  I  find  the  Einstein  solid  the  composite

Einstein solid in such a state that, subsystem A has energy epsilon A and subsystem B has

energy epsilon B and there independent of each other and this is given like this.

So,  once  again  following  the  behavior  of  gamma  A B,  what  you  find  is  that  the

probability A B that increases as you go towards the middle of the range of epsilon A and

then it falls off. So, basically what we learn here is as follows. For a given value of

epsilon A, I understand all associated microscopic states are equally probable.

For example, if I fix my epsilon A at epsilon A equal to 2, how many microstates are

available  to  the  system?  90  microstates  are  available  to  the  system  and  these  90

microscopic states are equally probable under the given condition. 

Now for larger allowed values are epsilon A gamma A B is larger. So, if I go from 2 to 3

as I see, that the number of accessible microscopic states under such condition this is

increasing and finally, I understand that there are 7 macro states possible to characterize

the subsystem A and what are the probabilities associated with each of them? As you

seen in this case the probability is 0.06, it increases as I go to epsilon A equal to 2 and

finally, it reaches a maximum and then it tapers off. 



So, this means that different macro states, which are characterized by the energy values

epsilon A of the given subsystem A, they have different probabilities. Please remember,

that  these are  the probabilities  of  observing the subsystem A with the total  value  of

epsilon A for energy, given the condition that  epsilon A plus epsilon B must always

maintain a constancy condition.
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So, this is the distribution of epsilon A as you see here and I can very easily indicate that

epsilon A equal to 3 is associated with the highest number of microscopic states and

hence this is the most probable state. In the next lecture we are going to see the effect of

the large values of N and epsilon on this distribution and conclude what happens in

realistic systems, where the number of particle is very large and even the amount of

energy available may also be relatively large.

Thank you.


