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Microstates of a System (Contd.)

So let us continue our discussion on the Microscopic States of a System in Equilibrium.

(Refer Slide Time: 00:22)

Where  we  are  talking  about  the  microstates  of  capital  N  in  distinguishable,  non-

interacting particles and we are focused on the spin half particles.
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We have already talked about the binomial distribution for magnetic moments, and we

find that if I have capital N equal to 4; that means, 4 spin half particles where there is no

preferential orientation for either the up or the down spin, in the absence of an external

field, it is possible to find out the probability associated with the total magnetic moment

of each; when the total magnetic moment of the system is measured. So, the way the

total  magnetic  moment  is  defined  is  capital  M that  is  equal  to  number  of  up  spins

multiplied by the contribution to the magnetic moment that they make number of down

spins and then the contribution of minus mu that they make in the up direction so that the

total magnetic moment now is given by small m into mu, where mu is the associated

magnetic moment for each particle.
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Now, I already know what P of n is and P of n is given by capital N factorial divided by

small n factorial into capital N minus small n factorial into P to the power of n into q to

the power of capital N minus small n. 

Now, the question that we are asking here is instead of n, can I use m as the descriptor of

my microscopic states. Why m? Because the different values of m will be the different

outcomes  of  your  experimental  measurement  of  the  total  magnetic  moment  of  the

system. And in this case I really do not know what are, what is going to be the outcome

of one particular step of my experiment.

That is because there are so many microscopic states associated with one such value of

m; now what are these values of the given number of microscopic states? Let us say that

f n is the number of microscopic distinct microscopic states associated with n up spins,

correspondingly I would say that f 1 is the sorry f m is the corresponding number of

microscopy distinct microscopic states associated with the total magnetic moment value

of small m. And therefore, probability of n is given by f of n divided by gamma total.

And since n is given in terms of capital N by this relationship I can always change this

independent variable by m. So, what would be the mapping? The mapping would be P n

would be equal to the same form of p, but I will have n equal to capital N plus small m

by 2.



So, this is exactly what has been shown here. Now as you see that here n when I use n to

represent the different possible microstates what I find is n can vary from 0 to 4 for the 4

particles of the system. Now when n is equal to 4 as we have already discussed then what

is the magnetic moment value? I understand that capital M would be equal to 4 into mu

because in this case small n is equal to 4 and n prime is equal to 0, and therefore, m that

is equal to capital M by mu that must be equal to 4. So, that is this point that we have

marked. 

Similarly, if I look at the case where small n is equal to 0, what is the corresponding

value of capital  M; when small n is equal to zero obviously n prime that is equal to

capital N minus small n that must be equal to 4, because capital N is equal to 4. And

therefore, small m that is going to be 0 into mu, minus 4 into mu therefore, small m is

going to be sorry capital M is going to be minus 4 mu. Therefore, what is small m? Small

m by definition is capital M by mu that is going to be minus 4.

So, this is exactly what we have shown in this part of the plot therefore, just by changing

the corresponding values that m can take corresponding to each value of n, I can map P

of n the probability distribution of m to the P prime of m that is a probability distribution

associated with the magnetic moment small n. And here what we note is that P prime m

this  distribution is  the same distribution function,  with a maximum that  appears that

small m equal to 0. 

Now, please note that the small m equal to 0 is associated with small n equal to 2. Now

small n equal to 2 would give me n prime equal to 2, which means the total magnetic

moment is going to be equal to 2 mu minus 2 mu, that is equal to 0. Therefore, small m is

going to be equal to 0 for non zero values of mu. 

Now,  looking  at  the  similarity  we  understand  that  if  I  am  measuring  making  a

measurement of the total magnetic moment in that case, I am going to have maximum

number of times in my experiment the output would be a 0 magnetic moment. This is

what is meant by the interpretation of this distribution function.
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Let us next have a have a look at how we can look for a larger number of spin half

particles, that is now present in the apps there is no applied external field present, but I

have a much larger number of spin half particles. So, in this case let me take n is equal to

20, and for this case therefore, I will have values of n plus n prime equal to 20.
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So, what is n min the minimum value of small n that is the number of up spins is equal to

0, and the maximum value of the number of up spins equal to 20. So, for this set I will

have all down spin particles and here I will have all up spins particles. Now the question



is what is gamma total here? The gamma total now is going to be a much larger number

that is going to be 2 to the power of 20. And I can find out the probability associated with

a given value of n or equivalently I can find out the probability distribution for a given

value of m, where small m is equal to capital M the total magnetic moment of the system

divided by mu. 

Now, let us have a look at the binomial distribution once, again here the major things that

you must  note is  that  the minimum value of  N is  20 the maximum value of  n is  a

minimum  value  is  0  and  the  maximum  value  is  20,  but  still  I  have  a  symmetric

distribution  because  there  is  no  applied  magnetic  field  and  therefore,  there  is  no

preferential orientation for any of the sites to have an up spin or the down spin. This is

the symmetric distribution about a maximum and P m this maximum appears at small n

equal to capital N by 2 or in other words where small m is equal to 0.

At this point the question is what happens if the 2 orientations up and down are not

equally probable, in that case you can consider the situation where you have applied an

external magnetic field, and because of that you now have a situation where p is equal to

0.7 and q is equal to 0.3. 
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Now, if that is so, then let us have a look at what will happen to the binomial distribution

if I have let us say capital N equal to 10. So, as you see that when capital N is equal to

10, the accessible values of m is minus 10 to plus 10, but here the distribution once again



it  has  a  maximum,  but  that  maximum does  not  exactly  appear  midway between the

accessible values of small m. Not only that what I find is here some of these values are

this is actually pretty skewed. Now this kind of skewed asymmetric distributions we will

continue to see in the presence of the external magnetic field.

So,  next  let  us  increase  the  number  of  particles  and  try  to  see  how  the  binomial

distribution changes. As you see for capital N equal to 20, what are the different values

of small m possible that is given by this shaded region? And once again we find that I

have an asymmetric distribution of values of m with one point that is a maximum, and

once again the maximum is associated with some average magnetic moment m bar, and I

find  that  this  m bar  value  is  flanked  on  both  sides  by  nearly  equal  probable  states

corresponding to this m equal to 10 or some other values.
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Now, if I further increase the number of particles what happens under this condition?

Look at this is N equal to 30. As you see the number or the range of small m values these

are increasing with the increase in the number of total number of particles.

And this is for n equal to 50, where we have covered the entire range from minus 50 to

plus 50 for the m values of the system.
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Now, with this idea in mind, let us now compare the 2 cases where I have in the presence

of an external magnetic field p is not equal to q, and this is the case where n is equal to

plus 10.

That is there are a total of 10 spin half particles present, and here I have another case

where 50 spin half particles are present. So, what should be my major conclusion from a

comparison?  What  I  find  here  is  that  with  increasing  n  the  asymmetric  nature  is  is

observed for the case where p is not equal to q; the distribution still exhibits a maximum

and as I go on increasing n what I find is that the nonzero population is pronounced only

around the maximum, but if I think about the extreme values like plus 50 or minus 50 the

probability of observing associated with those values of m are nearly equal to 0. So, what

have we learned from here.

The major  takeaway message from this slide is  that,  when I  increase  the number of

particles present in the system, I have there is a very important consequence of that.
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So, at this point I know that for a given total  value of n, I have associated with it a

binomial distribution P n where small n is the number of up spins that is observed when

the magnetic moment is measured. Now if you have a system that is having a very large

number of capital N, that is typically 10 to the power of 23, I would argue that the small

n must also be a very large number. So, accordingly like what we have done before we

can use stirlings approximation and express the natural logarithm of P n by simplifying

these expressions. So, how do I do it? I know that P n is equal to N factorial.

Divided by small n factorial capital N minus small n factorial P to the power of n, q to

the power of capital N minus small n if I take a log then I will be having ln N factorial

minus ln small n factorial, minus ln capital N small n factorial then plus small n, ln p

plus  q  plus  capital  N minus  small  n  into  ln  q  right.  Now how do I  find  out  these

quantities, I am going to use the stirling approximation. 
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When I use the stalling approximation, I can very easily write this terms as ln P n that is

equal to capital N ln N minus capital N this is for ln capital N factorial.

I can also write for minus of ln small n factorial a term like this, also I can have the term

corresponding to capital N minus small n factorial and finally, I retain the terms plus n ln

P plus capital N minus small n into ln q. I can do a little bit of algebra get rid of all the

terms like that I do not really require and this is what I am going to get. Now this also

tells me that if I go on increasing capital N, I am going to see one prominent maximum

in P of n. And most of the nonzero values of P of n will be located around this location of

the maximum. 

This is what has been the observation from the binomial distributions that have been

showing to you before. Now let us see what is the consequence of this observation? First

of all if I have P n equal to P max at n equal to n tilde say, in that case I can very easily

say that if I take a derivative of ln P with respect to n, I can put it equal to 0 at n equal to

n tilde. So, this is a little bit of mathematics if you know ln P, you can always find out the

first derivative of ln P with respect to n, and if you then put n equal to n tilde you will

find that n tilde is equal to capital N that is the total number of particles present in the

system, multiplied by the probability of observing one particle in the system with an up

spin.



And therefore,  for the system where I talked about the symmetric  distribution P was

equal to half, as a result we saw that n tilde the location of the maximum was at capital N

divided by 2. 
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Now  once  we  understand  this,  let  us  go  one  step  further  and  trying  to  see  the

consequence for the consequence of this equation. I can take the second derivative of ln

P n with respect to n and you can very easily show that, this second derivative will be

given by this expression. I am not going to do this algebra here, but I am going to tell

you that well if you are going to evaluate this second derivative, at the location of the

maximum.

Where n is equal to n tilde and in tilde is equal to capital N into P you can very easily

show that  the value of the  second derivative  at  the location  of the maximum in the

probability distribution is given by minus of inverse of n capital N p q, but why is it that

I am interested in the second derivative? I am doing this because as I said that P n is not

equal to 0 is roughly about 0 if small n goes much greater than n tilde or small n falls

much much less than n tilde, which means that in the vicinity of n tilde n minus n tilde is

a small variation. So, accordingly what I can do is, I can use a Taylor expansion and

express ln P n as follows.

Let us now see; what is the further consequence of having a binomial distribution, for a

very large number of magnetic moments. Now let us have a look at the second derivative



of ln P n. Now what I find here is that the second derivative can be evaluated very easily

from this algebraic expression. If I do that and evaluate this second derivative at the

location of the maximum, what I find is that that depends on capital N, it depends on

small p and small q. But what do I need this second derivative for. I can use the value of

the second derivative around the position of the maximum to approximate what ln P n is

going to be in the vicinity of n equal to n tilde and you will be very easily able to show

that ln P n tilde minus only this term will be will survive. 

Now this basically says that I have here log of P n natural log of P n is equal to natural

log of the maximum probability minus some square term in n minus n tilde. And this

means  that  I  can  now  write  the  overall  distribution  function  like  this.  Now  this

distribution function is not exactly the binomial distribution function that we have been

looking at, rather this has a form which is known as the Gaussian distribution. So, I have

now  shown  to  you  how  to  arrive  at  the  Gaussian  distribution  from  the  binomial

distribution that is typically applicable to the spin half particles.
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Now, what I have now here is that for n equal to 100 I saw that the values of capital M

are equivalently small n, they were nearly a continuously changing.

Therefore  the  distribution  function  could  be  represented  like  this  with  a  maximum

around m bar, but if we change the number to 10 to the power of 24, that is typically

what we have in a realistic system, then itself the average magnetic moment is going to



be very large and this is located somewhere here. Then the main 2 differences that you

see over here is that here you have a wide distribution, but here compared to the allowed

values or all possible values of capital M you have only a very narrow distribution and

the next question that I ask is, is it possible to find out what this m bar is and what the

width of this distribution is.
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In order to do that, basically now I have this Gaussian distribution, which is given by this

expression.

And I know that the maximum of this appears at n tilde equal to capital N into P. The

next step is to demand that certain properties of the distribution we met, and that is the

normalization property. Now if I want to know what is the condition of normalization. If

you have a continuous variable then this is the condition of normalization, that if you

sum over or integrate over all possible values of n you should get 1.

So, if I do it, if I repeat this exercise for this Gaussian distribution what I get is P of n

tilde that is equal to 1 by root over of 2 pi capital N p and q. And also it is possible to

find out quantities like the average value of n, and this average value of n can be shown

to be equal to the value of n where the maximum of P n appeared and this is given by

capital N into P. Similarly one can do a little bit of mathematics and find out the standard

deviation in this particular system. If sigma is the root min square deviation then this is



sigma square is the mean square deviation and it can be very easily shown that this is

related to capital N p and q. 

So, what is it that we have learned from here? We have learned from here the following

fact.
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If I have a very large number of spin half particles, then the different microscopic states

associated with small n up spins can be represented in terms of a distribution function

which is Gaussian in nature, and this is the general form of the Gaussian distribution

function. Now here I see that there are 2 parameters appearing, one is n bar and another

is sigma. So, for the given system what do I think are n bar and sigma are? N bar and

sigma are given by capital N into P and sigma square is given by capital N p and q. Now

please try to understand if capital N is a very large number and small p is a fraction, n bar

itself is still a very very large number now look at the possible values of sigma. 

Now, sigma square is capital N into p into q. Now p q typically they are in the absence of

the field equal to half, but sigma square is then dictated how big sigma square is it is

been dictated by the value of n. So, once again this is a large number, but when we are

talking  about  large  numbers,  you  must  realize  that  for  capital  N  a  big  number  the

possible values of small n are also varying from a very big from 0 to a very big number

capital N. So, the more relevant quantity that we should probably be talking about is the



relative size of the region where the nonzero probability appears, and this is defined in

terms of sigma divided by n bar.

So, if you look at the value of n bar and sigma is a dispersion of this distribution about n

bar.  So,  if  I  compare  these  two the  number  that  I  am going  to  get,  is  going  to  be

independent of how big either sigma is or n bar is for the given case, but we will let us

know about the relative size where the distribution is nonzero, and in this case I find that

this goes as 1 by root N. Now N is typically 10 to the power of 23 to 24, which means

that the relative size is very very small and that explains why we have got this very sharp

distribution where m bar that is the average magnetic moment, it falls off around has a

distribution that picks at m bar and sharply falls off as we move away from m bar. 

So, the basic idea that we would take away from this lecture is as follows; when I have a

complex  system  comprised  of  many  different  particles,  the  simplest  way  we  can

approximate is it is I labelled them as distinguishable particles and I do not allow them to

interact with each other. But even that this kind of a simplified system tells you that if

you fix the total number of energy of the system; total amount of energy of the system

you keep it in a constant volume and you have a very large number of particles, then the

outcome of your measurement is a function of all possible values of energies that the

system can take.  And these  different  possible  values  of  energies  are  associated  with

different number of particles. And if I look at the distribution for a very large number of

particles, I find that for a given system you will see that there is some average value

where the system is most probable.

In our next lecture, we will see how such considerations can be generalized for a system

of simple harmonic oscillators, and from there we will take up the discussion of micro

canonical ensemble.

Thank you.


