
Solid State Chemistry
Prof. Madhav Ranganathan
Department of Chemistry

Indian Institute of Technology, Kanpur

Lecture - 54
Bands in Higher Dimensions

In this lecture, I will briefly describe a Bands in Higher Dimensions. We will not be able

to do too much quantitatively here ok. So, I will just show it very schematically ok. So,

week 11, lecture 4 will be bands in higher dimensions.

(Refer Slide Time: 00:35) 

So, to  understand  bands  in  higher  dimensions  recall  that  the  band  structure. Band

structure is basically given by energy as a function of k ok; energy as a function of k ok.

In 1 D, this k vector was just k in 1 D ok. Now, in 2 D and 3 D, k will be a vector ok. So,

now, what can you say about this vector ok? So, k is a vector in the space of all wave

vectors. So, the space of all vectors is called reciprocal space ok. So, reciprocal space is

like the space of all possible k vectors ok, just as the real space is a space of all possible r

vectors ok. Now, the reciprocal lattice is a lattice in reciprocal space, just as a  Bravais

lattice is a lattice in real space.

So, reciprocal  lattice  is  a lattice in reciprocal  space and it  is  characterized  by lattice

translation  vector  K; K is  a  reciprocal  lattice  translation  vector  and  we  know  that

reciprocal lattice is also a  Bravais lattice. So, what does that mean? That means that if



you are looking in this reciprocal in the space of all wave vectors so, instead of having so

in real space so, this is real space ok. 

You have your coordinates X Y Z rather I will put this as X Y Z and you have this lattice

in real space, Bravais lattice in real space. Some lattice I am just showing a few points,

just to indicate that there is a Bravais lattice in let me show it in a different color, it will

be better. This is your Bravais lattice, in real some Bravais lattice in real space ok.

So, this is the lattice, which is the ordered arrangement of points in real space. So, this is

called the Bravais lattice. Now, in reciprocal space it is actually, exactly the same thing;

exactly the same thing. I mean, when I say exactly the same thing, I actually mean, it is

almost it  is pretty much identical. In the in reciprocal space, you have kx, ky and kz

instead of having x, y, z, you have kx, ky and kz and again you have some lattice. 

We just call the reciprocal lattice ok, this is supposed to be a lattice and it is just like a

Bravais lattice. It is an array ordered arrangement of points and each point is identical to

the other ok. So, this is our reciprocal lattice and essentially just as the Bravais lattice is

characterized by a lattice translation vector  R ok, this is that this is characterized by a

lattice translation vector K ok. So, K so, essentially the reciprocal lattice and the Bravais

lattice are the same thing, only thing this is in reciprocal space ok. Now, where things get

interesting is that, corresponding to a Bravais lattice ok, there is a reciprocal lattice. 

So, corresponding to a given Bravais lattice, there is a reciprocal lattice ok. Now, if your

Bravais lattice is simple cubic, then the reciprocal lattice is also simple cubic, if your

Bravais lattice is FCC, then the reciprocal lattice is BCC, if the Bravais lattice is BCC,

then the reciprocal lattice is FCC ok, but whatever it is some lattice reciprocal lattice is

some lattice and if it is a lattice, then it has a lattice translation vectors ok, but there is

also a unit cell and you can choose unit cell of your choice.

So, there will always be a unit cell for this reciprocal lattice. So, I can just show some

unit cell ok, that might be the unit cell and depending on what the reciprocal lattice is

you can choose the; you can choose different unit cells ok.
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Now, one particular unit cell ok, which is of interest to us is called the Wigner Scitz cell

and  so,  this  Wigner Scitz cell  is  a unit  cell  that is  formed by taking intersections  of

several  surfaces  and  just  to  show  you  in  2  dimensions  ok.  So,  let  us  show  in  2

dimensions ok. So, the way you form the Wigner Scitz cell is ok, let us consider a square

lattice.

 If you have a square lattice, let me show one more set of points ok, let me show this set

of points. Now, let us take the point, how do you construct the Wigner Scitz cell. So, we

take any one point ok. Let us say this point ok, Wigner Scitz cell by the way it contains

only one point contains exactly one point and it has all the symmetries of the lattice.

So, it contains exactly one point and it has all the symmetries of the lattice. So, how do

you construct it? So, suppose you take this point at the center ok, then you see that its

closest neighbours or this atom. So, now, if you take; if you take this segment joining the

atom, draw joining the center atom to its nearest neighbour and you bisect it ok, you

bisect it with a line in the in 2 D. 

It is just a line ok, you will get something like this ok. Now, you do this again, in this you

do this for the next neighbour, you will get another line like this, you do it for the third

neighbour you will get a line like this, you do it for a fourth neighbour you will get a line

like this ok. Now, you do the same for the next nearest neighbour.



So, here let me emphasize that we bisected each of these four nearest neighbours ok. So,

we bisected the segment, joining these nearest neighbours and we got a grid like this.

Now, if you take the next two nearest neighbours that is these, these 4 atoms are the next

two nearest neighbours and now you bisect this segment ok, then you will get something

like this; you will get something like this ok. 

Then you go to the next to next nearest neighbours and that is these are the next to next

nearest neighbours ok. Now, if you bisect the segment joining the central atom to these,

you will get something like this ok. And now, I will just I mean, I do not, I will just show

one more that is quite illustrative ok. Let me take the next to next nearest neighbour. So,

I will take this one.

So, after this the now, there are there are not only 4, but there are 8 next to next to next

nearest neighbours ok. Now, you consider this segment, joining this to the central atom

and you bisect it and what you will get is something that looks like ok. So, I just by, I

just bisected the segment joining this atom to this atom and I will get this purple line, I

do the same for these two atoms and now, I will get another purple line that looks like

and you can do the same you will get; you will get a purple line that looks similarly, you

will get 2 purple lines and you will get on this side also ok. 

Now, you ask what is the intersection of all these? And the answer you will get is this.

This is the intersection of all these and this intersection is the is called the Wigner Scitz

cell and this is also called the first  Brillouin zone.  So,  Wigner Scitz cell and the first

Brillouin zone is the Wigner Scitz cell, is Wigner Scitz cell of reciprocal lattice. So, it is

a Wigner Scitz cell of the reciprocal lattice is called the first Brillouin zone ok. So, what

you imagine is that this is in k space.

So, you have k x k y and we are looking in at this reciprocal lattice ok. Now, the second

Brillouin zone is the set of points that are next to nearest from the first. So, all the points

in this red region are closest to the center point than any other points. So, they are nearer

to the center point than any other point ok.

So, if you take all the points in the red region all the points any point inside this red

region will be closest to the through to the central atom. Any point in the blue region will

have one atom that it is closest to and the second closest atom will be the center atom ok.



So, this is called the 2nd Brillouin zone and you can similarly, you can go and identify

the 3rd Brillouin zone. 

Now, the 3rd  Brillouin zone becomes a little more tricky in this case actually the 3rd

Brillouin zone is just this region. So, all  the points that are two other points that are

closer to it than the central point. So, everything is with respect to the central atom and

you can define the 1st 2nd 3rd and you can go on, you can define the 4th Brillouin zone,

the 5th Brillouin zone and so on ok.

I am just showing the construction, you should actually try this yourself and identify

each of the Brillouin zones. So, the first Brillouin zone in a 1 D lattice, the first Brillouin

zone was just a region from minus pi by a to plus pi by a, but in 2 D if you can see it is a

for a square lattice, it is a square region ok. Now, the Wigner Scitz cell of a. So, for an

FCC lattice; for an FCC lattice the reciprocal lattice is BCC ok. So, the reciprocal lattice

of FCC is BCC and for a BCC the Wigner Scitz cell actually becomes quite complicated.

So,  the  Wigner Scitz cell  for  BCC is  not  a  simple  cube, it  is  in  fact,  a  truncated

octahedron ok. So, I will just tell what it looks like. So, you have this kind of so, I mean

we have these hexagons and these diamonds forming a truncated octahedron. 

So, I am just showing it approximately, but it looks like this object ok, which is a three

dimension like a ball ok. It is like an octahedron, but you chop off the sides using this

kind of piece and you get a truncated octahedron, which is the  Wigner Scitz cell of a

BCC. So, if you take a cell of this shape and just take it around any atom in a BCC ok, if

you keep repeating that you will fill up the space ok.  So, the unit cell for this  BCC is

actually quite complicated ok.



(Refer Slide Time: 17:54) 

So, now, what do we have, if earlier if we wanted to show bands ok, we just showed

energy as a function of k ok, but now, you have energy as a function of k vector ok. Now,

in this case you could just plot from minus pi by a to pi by a ok, passing through 0 and

that was the first  Brillouin zone ok. Now, in this case, in higher dimensions, you have

this  truncated  octahedron  ok. Let us  say  for  an  FCC lattice  ok, you  have  a  BCC

reciprocal  lattice, whose  unit  cell  is  a  truncated  octahedron.  So,  it  is  truncated

octahedron, I am just showing approximately the shape. Now, the center of this truncated

octahedron ok.

So, the center of this truncated octahedron is called so this point where k equal to 0, 0 k

vector is 0 is called the gamma point gamma ok. So, gamma is one point that is there

right at the center of this unit cell. So, it is there deep inside ok, do you have this gamma

point ok. So, gamma is right in the center I am not showing that point. Now, in the case

of 1 dimension so gamma is like the 0 in 1 D ok. 

So, the equivalent point is a 0 in 1 D and now in 1 D you just needed to go from 0 to pi

by a ok. In this case, things are more complicated, because you could go from the center

of the Brillouin zone to the edge of the Brillouin zone that is to the surface of this Wigner

Scitz cell, but there are different points you can go, you could go to a point that is at the

center of the hexagon, you could go to a point that is at the center of this rhombus, but

you could go to a point that is located somewhere on the at the intersection of these



points, you could go somewhere here and in each case your band structure will look

different ok.

So, what is done traditionally is each of these points are given a name. So, this point is

called  X or chi point, this is called the L, this is  W and this is  K ok. These are capital

Greek letters and  so when you show the band structure, what is done is you typically

show from the gamma point ok. You construct a path in reciprocal space ok.

So, the path in reciprocal space will tell you, in which way you will show the bands. So,

here, in the 1 D case you just went from minus pi by a to plus pi by a. So, here in 2 D

you will go from the gamma. So, one example of a path is gamma to  X to  W to  L to

gamma to K to X; that means, what you do is in your axis in your X axis ok, you start at

gamma this is your  K  axis. So, you start at the gamma point then you go along; that

means, you go from the center you come out to the point  X. So, you come out to the

point  X on along the straight line then from  X, you go to the point  W again along a

straight line. So, let me show this path.

So, you have the gamma point you come to X, then you come to W, then you go then the

path actually goes to L ok, then it goes back to the gamma point which is deep inside and

then it comes to K and then it comes to X. Let me show an alternate K point that is write

here oh sorry. Now, this is a K point, so, W to L to X and then to K and then back to X

ok; so, W to L to gamma and then to K and finally to X.

So, this is the path on which you are going to show the band structure and the band

structure will be shown in this path ok. So, if you look at a typical band structure of let us

say an FCC ok.
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So, let  us take an  FCC. So, the reciprocal  lattice is  BCC and  Wigner Scitz cell  is  a

truncated octahedron and again so the band structure so, the important thing is that you

have energy axis and this axis you have K and the variation of K, you start at the gamma

point that is at K equal to 0 and then you go to the X point. 

And let me put a dashed line here, then from X you go to W and then to L, you just go

along straight line paths ok. What is that? From gamma to W is not a straight line path

and only gamma to X is a straight line path, X to W is a straight line path W to L L to

gamma back to gamma to K and K to X and I am just showing these lines for reference

ok. Now, let us show the case of the free electrons ok, if it is nearly free electrons, there

will be some perturbation.

So, you will have some band that looks like this ok, from gamma to X just like your free

electron band ok. Now, this is going to intersect some other band and basically, because

these are not straight lines ok. So, the band might be in a different direction.

So, for example, it might intersect a band, that makes it go like this ok. Now, there could

be another band ok, that goes from X to W and that might go say this way ok. Now, there

would be another bands, let  us imagine that there is a band that goes like this.  This is

again the gamma point and now, you will have at this gamma point, you will have this

parabolic behaviour and then from gamma to X you will have some other ok. 



And what I am trying to show is that you have a fairly call, you have a fairly complicated

band structure ok and I again this is just schematic ok, I am just showing schematically

what the typical band structure look like and what is amazing is that all this is got just

from the free electron model ok. So, this whole band structure that I am depicting here is

all based on the free electron model ok. In the sense I did not take any interactions, I do

not have any band gap and you have several lines here ok.

So, you have all these this kind of complicated structure and you will find this in, if you

read any journal you know or any if you look at any book in solid state physics, you will

find such things. And in fact what would happen due to the non free nature of the bands

due to  the  non free  nature  of  the  electrons, because  the  electrons  are  not  truly  free

electrons ok. 

What you will get is this band structure, will look slightly more complicated gamma X

W L gamma K X ok. What will happen is that each of these bands will actually, because

of the repulsion, they will go to something like this. So, you will have a band structure

that looks something like this and it is actually in analysing this band structure. So, this is

if there is perturbation, nearly free electrons ok and in general the band structure will

look something like this ok. 

So, the whole point of this whole exercise is to show, how you can get bands both in 1 D

and in higher dimensions and again  I have just shown this schematically, but you can

actually plot the free electron levels for this  BCC and you can actually show what the

bands look like. So, with this  I will conclude this 4rth lecture of week 11. In the next

lecture, we will do some practice questions ok. I will keep it short lecture, where we will

basically, just revise what we did and do a couple of practice questions.

Thank you.


