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Band Theory of Solids

Now, I will start the third lecture of week 11. In the last lecture, we learnt about Bloch’s

theorem and how Bloch’s theorem can be used to describe electrons in a typical solid and

we qualitatively saw how bands, how we can roughly understand what bands are. So, in

today's lecture, I will be talking about the Band Theory of Solids and we will go into

slightly more details and we will try to do it a little bit more formally ok. We still will not

be able to do it in a you know very accurately, because the problem is not solvable

exactly, but we will be able to see how bands appear ok. So, today's lecture will be on

band theory of solids.
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So, let  us, we will talk about the system of a non interacting electrons in a lattice. So,

what I mean is that, you have a solid and you have all these ions ok. I am just showing

them as  black  dots  here and you have a  lattice  of  ions  and in  this  lattice  you have

electrons which are essentially, except for the lattice they are just moving freely and we

want to think about how, what this will look like ok. We want to think about what this

will look like and what we said is that according to Bloch’s theorem, the presence of a



lattice, the presence of a lattice implies that these electrons can be described individually

by a wave function ok that has the following form. So, psi n k of r, this is equal to e to

the i k dot r times u nk of r.

So, this is Bloch’s theorem and I am not going to prove this ok, you can look up standard

reference, standard texts for the proof, but that is not important, what  Bloch’s theorem

also says is that you can write the wave function of these electrons moving in a lattice by

this ok, where u nk of r is equal to u nk of R plus some vector belonging to the Bravais

lattice  ok. R is  some  vector  belonging  to  the  Bravais lattice.  So,  this  is  a  lattice

translation vector ok. So, R could be any of these vectors.

So, you could have R like this, like this any of these could be R ok, you could have R is

one of the lattice translation vectors and what Bloch’s theorem says that you can take any

lattice translation vector and add it and since and this u nk, which appears in the solution

of the wave function is a periodic function. So, you have a periodic function multiplied

by e to the i k dot r ok. Now, let us ask, we are going to write this in an alternate form.

So, alternate form of  Bloch’s equation, which is actually very useful and very incisive

ok. Now, let us ask a question what is psi nk of r plus R. So, suppose I ask what is this,

ok?

So, now if I do the same on the right hand side of the wave function ok, then you will get

e to the i k dot r plus R times unk of r plus R ok. Now, we know that u n k of r plus R is

just unk of r and I will write this in the following way. I will write it as e to the i k dot R

multiplied by what I will have is e to the i k dot small r and since unk of r plus R is same

as unk of r, I will just write this as unk of r ok. So, this is written as e to the i k dot r

times psi n k of r.

So, this is what we had here was just psi n k of r. So, we have this alternate form of

Bloch’s wave function, alternate form of Bloch’s theorem is that your wave function can

be written in this form ok. So, whether you write it in whether you write Bloch’s theorem

in this form or this form, it is actually the same. Now, there is something that something

nice that happens, when you write it in this form ok. That is the following. Suppose, you

ask the question, what is psi n k plus capital K of r?

So, let me ask the question, what is psi nk plus capital K of r plus R,? So, now, from this

form of Bloch’s theorem, this can be written as e to the i k plus capital K dot R times psi



n k plus capital  K of r ok. Now, we have a very nice theorem that states that e to the i

capital K.

So, capital  K now, what  I mean by capital  K is that capital  K is a it belongs to the

reciprocal lattice. So, the reciprocal lattice that we talked about earlier. So, K is a vector

of the reciprocal  lattice and now, what this says is  that  is  since it  is a vector of the

reciprocal lattice, you have e to the i a vector of the reciprocal lattice dot R into vector of

the normal lattice should be equal to 1.

And so, if you expand this and you take it to the next step, you will see that this has an

implication that psi n k plus capital K of r is equal to psi n k of r ok. I am not showing

the intermediate steps, but you can use this and you can manipulate this to show this final

result and the other relation that we get is that e the energy of the Bloch electron epsilon

n k plus capital K is equal to epsilon n k.

So, these two equations here, they describe the periodicity in reciprocal space and this is

a consequence of Bloch’s theorem ok, that your wave functions are periodic not only in

real space, but they are also periodic in reciprocal space ok. And again let me emphasize

that I have not shown all the steps going from here to here, but you can work it out ok.

Now, what else do we want to say  so now, let  us use this, these ideas in looking at

electrons on a one dimensional lattice ok.
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Now, if you have only one dimension ok. So, in one dimensions there is only one Bravais

lattice only one Bravais lattice and this lattice is you can think of it as just we can we can

take atoms on a line equally separated by distance a ok. So, they are equally spaced by

distance a and if you have all these ions and now, you have this electrons that are going

in this ok. So, this will be a very nice illustration we will see how bands naturally appear

ok.

Now, so, these electrons ok, they are like so except for the ions the electrons are just

moving freely. So, there are ions ok, which impose a periodicity. So, let us look at free

ok and I am putting free in quotes, because these are free electrons on a lattice ok and in

what  sense  do  we mean  that  they  are  free;  that  means,  in  between that  there  is  no

interaction potential ok. They do not feel any forces in between, but there is a periodicity

up that is imposed on the wave function ok.

So, what we have is that your we have epsilon k. So, for a given wave vector k the free

particle solution say that this is h cross square k square, in this case this is k is just a

scalar h cross square k square by 2 m e the mass of the electron ok. Now, so on this

lattice these electrons are not really free, there are some periodic, there are some there is

a periodicity of the lattice, but now let us just look at this. Let us look at this relation.

So, I will put epsilon as a function of k and let me do this in the following way. I will,

choose ok, now, notice that in the reciprocal lattice ok. So, that looks like it is equally

spaced points in k space ok. So, this is in, k space in wave vector space, but the spacing

between the points is actually 2 pi by a ok. Now, in other words, the, what we are going

to say is that this energy of k is equal to energy of k plus 2 pi by a and basically , it is 2 pi

by a times any integer times any integer ok.

So, it can be plus 2 pi by a, it can be minus 2 pi by a, plus 2 into 2 pi by a, minus 2 into 2

pi by a and so on ok. So, what we are saying let me extend this graph a little bit on this

side ok, just to illustrate the illustrate the point that if you look at this energy versus wave

vector ok, you will get some relation that looks like so, it looks like this ok. So, this is the

this is just it is a parabolic function E ks h h cross square k square by 2 m e. So, it is just

a  parabolic  function  and  it  will  look  like  this  ok. Now, since, you have  this  Bloch

condition ok, what you will get is you will get another parabola in energy.



So, this is 2 pi by a and here, I have a another parabola that looks exactly like this. So,

since the wave function here, should look exactly like since this wave function should

look exactly the same at 2 pi by a ok. So, at 2 pi by a just due to periodicity, I will have

exactly the same form of the wave and it will go out ok and they will cross each other

exactly at pi by a. So, I have to draw this properly, we will cross each other exactly at pi

by a ok.

So, now, we will have a similarly, we will have something coming from the other side

that will also look like this ok. That is coming from the left from minus 2 pi by a, this is

minus 2 pi by a ok and so and so, you have this form of the wave function. Now, since

the energy is a periodic function ok, you only need to describe the energy in this interval

ok and notice we have just used a free particle form of the energy. So, this energy form

that we have used is a it is actually corresponds to the free particle. Now, if you just look

in this region ok, then you see what the energy looks like ok, I will let me show it in a

different colour.

So, it looks like this ok and then there is another band that looks like this and a third

band that looks like this ok. So, you can let me show the bands in different colours again

just to;  so, you can see that just due to periodicity, you see you see this kind of bands

forming ok. So, again let me emphasize that we have used free electron form of energy.

So, free electron form of energy used ok and the other point I want to emphasize is that,

though we show these k as a continuous variable, it is actually discrete variables ok. This

is due to the bond one, carbon boundary condition. So, actually there are only discrete

values of k ok, but they are very very closely space. So, it looks like a continuous set of

values of k ok. So, again just using the free electron picture ok and we are just  so, the

role of the lattice is just to bring this periodicity ok. And we see that if you look in this

region and then we see the we see a band like picture appearing. Now, incidentally this

region from here to here, this region ok, this region of k from minus pi by a to plus pi by

a is called the first Brillouin zone ok. This is in 1 D the first Brillouin zone just looks like

a region in k minus pi by a 2 plus pi by a.

So, if you know the energy in the first Brillouin zone, you can actually show the you can

actually calculate the energy everywhere else ok, just by imposing the periodicity of this

first Brillouin zone ok. And I should also emphasize again that there will be more I mean



I have shown only some of the periodic some of the parabolas, but there will be also be

more parabolas ok  and that will they there will be for example, there will be another

parabola that passes through this, that starts at 4 pi by a and it goes like this ok. And so,

essentially, what I want to say is that, this whole thing will just keep repeating.

So, you will see that again, again you will have exactly the same kind of behaviour in

each of the zones, each of the Brillouin zone ok. So, even in this zone, it will be exactly

the same ok. Now, with this basic framework ok, we can go to the so, here we the free

electron form of the energy is used ok and so, the lattice actually causes a very little, the

ions do not perturb the electronic wave function ok.

So, in this  form, in this  description the ions do not, it  is  as though the ions are not

perturbing the wave function,  but now, we can take this and we can add the idea of

perturbation ok. And so, if we think that the ions that are there, they will actually add a

weak perturbation ok, then what you can say is the following so, what you can say is that

this weak perturbation will actually affect, will actually change the band structure right

where these lines cross each other ok.

So, like this region, this region etcetera there will be some perturbation ok. We will see

that, in a few minutes ok.
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Now, let me so based on this depiction of bands ok, you can, there are a few different

ways to represent bands ok. Now, one is called a repeated zone representation, where you

show all the zones ok, where all the zones are shown so, for example, if you have the

first Brillouin zone, the second Brillouin zone and so on.

Now, then what the idea is that, you show all the zones, you do not only show in the first

zone ok. So, you are in the first zone, if you have something like this and a similar thing

and this  again  I am considering the free particle  form of the functions.  Now, in  the

second  zone, you  will  have  a  similar  thing  ok, you  will  have  something  like  this.

Similarly, in this zone also you will have something like this ok, this is called a repeated

zone representation, where you show all the zones ok. So, all zones are shown ok.

So, this is called a repeated zone representation of the bands and again let me emphasize

that here I have considered non interacting or a free electrons ok, but you can do this for

arbitrary bands ok. So, for arbitrary bands and arbitrary dimensions, you can do this ok,

pi by a minus pi by a minus 3 pi by a. The alternative to this repeated zone representation

is the reduced zone representation, where you essentially focus on one zone and you

show the band in that zone and we already saw what this look like ok. I will just show

this again.
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So, you just show the first Brillouin zone, which is minus pi by a to pi by a and if you

look at the bands ok, they will go like this and then they will go like this and so on and



you will  have more bands ok. You will  also have bands due to  things that  are even

further away. So, we will see you will have things like this well ok.

So, I am showing here, here I just showed the first two bands and or the first two just due

to this blue curve and this green curve ok, but you could have more band structure ok,

due to another band that is centered here ok and it will again go and eventually it will

come into the first Brillouin zone ok. So, you will also have more bands ok.

And so, in general the in the repeated zone, you will have several bands ok. And this so,

this repeated zones representation is also often used to describe bands ok. So, you can

either or the reduced zone where reduced zone means only first Brillouin zone ok. Now,

let  us ask the question what happens if there is a small interaction, if there is a weak

interaction in this band structure ok.

(Refer Slide Time: 28:08)

So, what happens in to the band structure, if there is a weak interaction and formally this

is done using nearly free electrons, it is a perturbative approach ok.

So, the ions cause a small perturbation to free electrons ok. So, the  Hamiltonian is the

Hamiltonian of the free electrons plus some small perturbation I will just write delta U,

this is a perturbation ok and without going into too many details ok, you can understand

this in a very similar way to how you understand, how you understand orbital theory,

molecular orbital theory ok. The basic idea is that if this perturbation is very small ok, it



will only affect. So, the solutions ok, will look like a the energy is equal to energy of free

electron ok, plus something that is related to delta u times I will just well, I will just write

some function of delta u ok. Now, so what is important in this perturbative approach is

that this function ok, will only be non zero, when energy levels cross and I again I will

just show this qualitatively ok.

So if you go back to, if you go back, let us look in the repeated zones representation. So,

we had a wave function, that look like this  ok and you had you had a second wave

function that is let us say starting here, that looks just like this, but shifted by 2 pi by a.

This is k energy ok and you have a similar one, on this side also ok. So now, what I want

to say is the following that right at these points, where the energy levels cross ok. This is

where, this is where the perturbation will be active ok and what the perturbation we will

do ok, we will do something with that is very that should be very familiar to you ok. you

might have seen this in energy levels of molecules ok.

So, what it will do is that, it will the perturbed energy and let me show this, let me show

this in light green ok. So, it will look very much like the free electron ok except close to

here, it will move away ok. So, in some sense these two energy levels will repel each

other and one will be pushed down the other, which I will show in a different colour ok

will be pushed up ok. The same thing is going to happen here to; same thing is going to

happen here ok.

So, this  energy level  will  be pushed down here and it  will  become like this  ok and

whereas, the this energy level will not be perturbed far away from the, intersection point,

but right near the intersection point, it will be pushed like this ok. So, our final energy,

our final band structure, we will now, look like this.
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So, let me erase this, it will look, we will erase this to look like this ok. So, that is what

the band structure will look like and if you look in the, reduced zsone, if you just look

within one, within the first  Brillouin zone ok, then what you see is you see a band ok,

you let us go to the lowest band.

So, you see a band of energy. So, this is a band of energies from here to here ok and then

you see something here, which is caused due to the perturbation that is a. This is called a

band gap ok and what has happened is that, because these, because of this perturbation

and then you have another band of energies from here to here ok and again, you have a

band gap again you have a band gap here and then you have another band of energies

here ok. These are continuous ok and the point is that this explains the origin of band gap

ok.

So, this nearly free electrons a perturbative approach explains origin of band gap, how

band gap appears ok and notice, that we have just used a free electron one dimensional

free  electron  picture  ok  and  just  putting  this  perturbation  and  I have  not  done  the

mathematics  of  the  perturbation,  but  I have  just  qualitatively  told  you  that  this

perturbation leads to a band gap.
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And so now, if you look at the, if you look at just in the first Brillouin zone ok, then you

will have and what we had was something like this and then something like this and

again you will get something like this ok, if you extend the bands you will keep getting

things like this. You will keep getting this alternation of bands that are either  going,

either like this blue, which going from going from 0 to pi by a, it goes down or it goes up

ok and you will see this band gap in the several places ok.

So, we see that this nearly free electron model ok, which is a basically, a free electron

with this small perturbation ok, that gives a nice band structure in 1 D ok. So, we have

both the origin of bands and the origin of the band gap seen in this ok. So, with this I will

conclude  this  lecture  in  and  so  and so,  in  this  lecture, we have  seen, how you can

understand the origin of bands and band gap in one dimensions ok.

Now, in  two  dimensions  things  become  a  little  more  complicated  in  two  and  three

dimensions ok, but so, in the next lecture, I will just briefly show you what happens in

two and three dimensions and we will come to the concept of a path in reciprocal space.

Thank you.


