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Lecture - 52
Bloch Theorem

Now, I will go to the second lecture of this 11th week. And in this lecture we will be

doing  the  most  important  idea  in  electronic  structure  of  solids  that  is  that  of  Bloch

Theorem.
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So, week 11 lecture 2 we will be talking about Bloch Theorem. To give you a perspective

we have been discussing about free particle wave function ok. And one of the things we

will do when we are dealing, when we are doing the Bloch theorem is to go beyond free

particle wave functions. Now what do I what did we mean by free particles free in what

sense?

So, it is free in the sense that it does not experience any potential, except the confining

one. So, that is what we meant by free particles. So, in the sense so what we mean is that

these electrons or these electrons were treated as free particles; that means, if this is my

crystal ok, then the electrons are treated as particles that are just freely moving within

this box ok. So, they were treated as so the free electrons they are just treated as particles

that are moving within this box.



So, it is in that sense that they are free and they do not see any potential, they do not

interact inside the box the potential of interaction is 0; so inside box U of r which is the

potential energy function equal to 0. So that means, inside the box the particle does not

feel anything and it is a free particle inside the box, but there is still confinement is there.

So, the confinement effect is quantization of energy level ok. So, the energy levels are

quantized, because the particle is confined to be within this box ok.

So, the particle is confined to be within this box. But so that makes the energy levels

quantized ok, but inside the box it does not have any potential of interaction and this is

like a particle in a three-dimensional box ok. So  now what we want to do is we want to

go beyond these free particle wave functions ok. What is it that we want to say? What we

want to say is something like this. I will just show this using a two dimensional picture.

What we want to say is that inside this box there are lots of atoms ok, and I will show

them as positive charged species because we took out the valence electrons.

So, what is left behind is some is ions and they form some lattice and let me just draw a

lattice for example, and so what you would like to take into account is that because of

this lattice there are two things that will happen. The first thing is that the electrons are

not free anymore electrons are not like free particles. So, what you had here electrons are

moving freely now they do not move freely ok.

So, the two effects due to lattice first one is that electrons are not free anymore; that

means, they it is the potential is not 0. So, that is U of r is not equal to 0 inside box ok;

that means, that means at various positions the electron will feel some potential.  The

second probably more profound effect that is there is that this is due to the due to crystal

lattice ok; there is a periodicity ok. So, there are periodicity is imposed effects and this is

probably the more profound one which we will be discussing in lot of detail ok.

So, what it means is that U of r is equal to U of r plus some lattice translation vector ah.

So,  r  belongs  to  Bravais  lattice  ok;  that  means,  what  we mean  is  that  the  potential

experienced by the electrons ok. So, whatever it experiences here, will be the same here,

it will be the same here, it will be the same here, it will be the same here, same here and

so on. Similarly whatever it experiences in let us say this point will be the same as what

is experienced here, it will be the same as what is the experience here this is just due to

the periodicity of the Bravais lattice ok.



So, what it means is that your potential is a periodic function with a period of the Bravais

lattice and in general this is a three dimensional lattice and so it should be true in all

dimensions all three dimensions. So, in general if you take a point and you look at this

point and this point they are related by a lattice translation vector they are related by a

lattice  translation  vector. So,  if  two points  are  related  by a  lattice  translation  vector,

similarly if you take this green point and you take this a green point all the way here ok,

these two are also related through some lattice translation vectors ok.

So, there is a lattice translation vector for that connects each green point to every other

green point. And so you immediately conclude that the potential  energy is a periodic

function, where with the periodicity of the Bravais lattice. So, these are the two effects

and today first I will be talking about just this effect. So, this is the main, this is the effect

that we will be talking about, for most of today and then and then we will also be saying

that of course, you will be saying that U of r is not equal to 0 ah, but the interesting

results will come because of this periodic nature of the Bravais lattice ok. Now, notice

we used a box now the size of the box size of the box was taken as L x L y and L z ok;

and we will see how this size also imposes a periodicity ok.
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So, let us now go to the next point ok. So, the Bravais lattice introduces a periodicity and

what we said is that, U of r is equal to U of r plus R that is the potential energy you

expect. In fact, you expect all functions other functions, of space will be periodic will



also be periodic. So, if you have a scalar function of phase of space then it should be

periodic. So, this is what you expect. Now I also mentioned that there is a periodicity that

comes from the overall size of the cell and let us look at this.

So, we have this overall box and again this is L x L y L z ok. Now we in the in the free

particle solutions; in the free particle solutions ok; we imposed a condition that the wave

function should be same at the two boundaries that the wave function should vanish at

the boundaries and that is how you got the free particle solutions ok. Now, what we will

do is we will this we can take this lattice parameter L x and L y and L z as integer

multiples of the unit of translation ok. So, this is the unit of translation of the Bravais

lattice and this can be I will call it a 1, a 2, a 3 ok.

So, what we are saying is that the L x is taken as an integer multiple. So, N x is an

integer and this, a 1, a 2, a 3 are basically the lattice translation vectors of your Bravais

lattice. So, the magnitude of each of the lattice translation vector magnitude of this is a 1,

this is a 2, a 3 this is a unit cell of corresponding to the Bravais lattice ok. So, what we

are saying is that we are going to take this length ok.

So, this length is typically many times the length of the crystal is many times that of the

unit cell ok. And what we will do is for simplicity we will take this length as an integer

multiple of this lattice parameter. So N x, N y, N z are all integers ok. Now what that

implies? So that, implies if you look at this quantity I will write this quantity right now

and then we will worry about it a little later ok. Now another restriction that is put is that

your functions are chosen to be periodic with L z ok.

So, there is a different periodicity, so periodic boundary conditions on the entire system

ok; that means, any function for example, the wave function of x y z is equal to psi of x

plus L x y z y if you want you can take y plus, L y and z plus L z it is you can do one or

two you can take any in all directions in all the directions there is periodicity ok. So, let

me put these in brackets.

So, you might just take x plus L x or you might just take y plus L y or you might just take

z plus l is L z and keep the others the same. So, in other words in other words so what I

want to say psi of x plus, this is same as psi of x plus L x y z and this is same as psi of x

y plus L y z and so on and you can make two of them different ok.



So, basically you are saying that all functions are periodic with this overall system size

ok. This is a tool this is also referred to this is a general tool that is used general principle

that is used; this is also referred to as the Born-von Karman boundary conditions ok.

Now what this imposes? What this imposes is that we will we will see what this imposes

it  says that if  your if  your wave function has to be a periodic  function;  that  means,

whatever value of the wave function is here it should be the same value here ok. Now, if

that has to be true then your wave function whatever it does in between it should come

back to here, ok. And there is a typical function that is periodic with this is either a sin or

a cosine function.

So, suppose you have a sin or a cosine function then it could be periodic this is not

periodic;  so it  could  be periodic  it  could  be  periodic  ok.  Provided the  provided the

wavelength of this sine wave is wave length multiplied by an integer and gives you the

overall length of the system ok. This is what we will see; we will see how this Born von

Karman boundary conditions effects the choice of wave functions ok.
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Now, let us go to the Bloch theorem which is the central idea of this of this lecture. So,

so here what we say is that, if we treat electrons as independently moving in the field of

the  ions  ok.  Then  you  can  write  the  total  wave  function,  which  is  a  function  of

coordinates of all the electrons as a product of coordinates of each of the electrons.



So, you can write it as a, where 1 is supposed to represent a coordinate of first electron

second electron and so on. So, 1 is equivalent to r 1, this is a wave function of I will

write psi 1 of 1 psi 2 of 2 psi N of N and so on. So, what I am trying to get it is now we

can  write  an  effective  one  electron  Schrodinger  equation.  So,  if  you  just  look  at  1

electron, if you just look at any one of these electrons ok, then it satisfies an effective one

electron Schrodinger equation that is written in the following way.

So, there is a kinetic energy of the electron that is minus h cross square by 2 m e ok,

times the Laplacian square. So, the kinetic energy in three dimensions is given by this by

this Laplacian or the square of the gradient, plus U of r; U of r is the potential that is felt

by the electron U of r.

Now, there is only one coordinate, there is only one electron and you just have some

wave function. Now let me so times psi of r this should be E times psi of r ok. This is a

one electron wave function; this is a wave function for a single electron that is moving in

this potential U ok. So, such an electron is called a Bloch electron and it is basically

moving in this field of these ions. And now there is a theorem now we go to the Bloch

theorem.

So, Bloch theorem says so this is let me remind you that that we have the condition the

periodicity U of r is equal to U of r plus R I where R belongs to the Bravais lattice, R is

some lattice translation vector ok. So, now you can see what we have here, what we have

is kinetic energy term and a potential energy term and that potential energy is periodic

with the periodicity of the Bravais lattice. So, if you have such a and this kinetic energy

involves a second derivative.

So, if you have such an equation then there is a general theorem which is called the

Bloch theorem in solid state physics; it says that your wave function ok. And let me I

will write it explicitly in terms of indices n k, k is a vector of r is equal to e to the i k dot

r u n k of r. So, I will tell you what I mean by this n and k, we will we will see that n is

like the nth.

So, whenever you have a Schrodinger equation and you solve it  you will get several

solutions. So, you get not just one solution, but several solutions and n. And so this n

index that is used to say which solution you are looking at ok. And now what we are



saying is that you can write a general solution in terms of this k, in terms of this wave

vector k ok.

So, the general solution can be written in terms of this wave vector as a product of two

terms. The first term is just e to the ikr there is a travelling wave this is a travelling wave

solution this part is a travelling wave. The second part is some function of r and there is a

restriction that this should be periodic, should be equal to U nk of r plus R where R is

capital R is any vector in the Bravais lattice ok. So, what it says that the wave functions

for this Bloch electrons with the solution of this equation.

This  equation  is  called  the  Bloch  equation.  So,  Bloch  equation  is  the  effective  one

electron  Schrodinger  equation  ok.  So,  this  Bloch  equation  and  the  solution  of  it

according to Bloch theorem can be written in this form can be written as some travelling

wave times a periodic function and there are several solutions each indexed by this letter

n ok.

So, if I just go back and write this equation again write the Bloch equation in a slightly

more slightly more illustrative way. So, U now I can write psi n k of r is equal to epsilon

n psi n k of epsilon n k ok. So, I am just writing the same Bloch equation in a slightly

more explicit  form with the indices and n k ok.  And as I said k corresponds to this

particular wave vector that is there in the solution, k corresponds to the wave vector that

is there in the solution ok.

(Refer Slide Time: 24:36)



Now, what does this imply for the, what does this imply for the first we will see what it

implies for the for the Born von Karman boundary condition. So, we can write so we are

going to use a periodic boundary condition, so that says that psi of x, y, z should be equal

to psi of x plus L x, y, z ok. So, this is the one the Born von Karman boundary condition,

von Karman boundary condition ok. And what this allows us to write, what this allows us

to write? 

Now, if you go back and substitute the form of psi; so if you substitute this form of psi,

so what you will get is that you will have a term that looks like e to the i k dot r ok. Now

and you will have U nk of r ok, this should be equal to, now if I change if I change x to x

plus L x ok; then k dot r will look like the following. So, if I use k dot r equal to k x x

plus k y, y, plus k z, z; then you will have k dot r plus L x i that is like, changing x to x

plus l x. So, this is equal to k x now instead of x I have x plus L x ok.

So, I will write the x term and I will write the plus kx L x the y and the z term will

remain as they are ok. So, this is equal to so now the first part is just k dot r plus kx L x.

So, now what I will write this as so e to the ik dot so on, the right hand side I will have e

to the i k dot I will write k x L x multiplied by e to the I k dot r ok. And I have U nk of r

plus L x i. Now remember we chose our L x to be N x a ok, this implies that L x times i

is equal to N x times a i ok.

And so it is just a times i multiplied by N x, so this is a this is a vector of the Bravais

lattice ok. So, this is a vector of the Bravais lattice. In other words since we said that, the

L x is N x times a is just an integer multiple of a. So, a translation by L x; a translation by

L x is also a translation in the Bravais lattice ok. So, what that will imply? That will

imply that U nk and that will imply that these two terms are equal ok. So, according to

the Bloch theorem these two terms are equal ok.

So, then we get a condition so this gives you a condition that e to the i kx L x equal to 1;

and similarly we can also get conditions for ky L y and kz L z. And so if e to the i times

something as 1 ok. So, this implies that k x times L x should be an integer multiple I will

call this m 1 or m x is an integer multiple of 2 pi ok. So, it should be two pi times an

integer then you have exponential of i kx L x equal to 1 ok; and this implies that k x

should be equal to equal to 2 pi m x by L x and what this implies is that the k all the ks

should be.



So, in general you can write your k vector as L z k ok. Now, notice that I have assumed I

will show you I should mentioned this clearly that I have assumed, orthorhombic unit

cell ok. So, in other words alpha equal to beta equal to gamma equal to 90 degrees ok,

this just makes the calculations easy I can talk in terms of unit vectors ijk so I have made

this assumption ok. Now what it says is that your k has to satisfy this kind of relation. So,

this is an important result and I can further I can further if I take if I replace L by n x a

ok, then I can also write this in terms of m x by N x and so on ok. So, I will not bother

doing that, but basically we can we can see that something like this should be true ok.
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So, now let me go to the dispersion relations and the band index ok. Now what this says

is that your wave vector, now usually you would expect L x to be quite large, in your N x

to be a very large number. So, the crystal will is likely to be very big ok. So, your m x by

N x will be a very very small fraction of a ok.

So, what you would expect is that your k; your allowed values of k ok, so the allowed

values of k are basically I can write as 2 pi now if I will write it as m x by N x 2 pi

divided by a by b mx or a 1 a 2 a 3. So, these are the other values of k and these are fairly

closely spaced because N x is m x can go from 0 to infinity N x is slightly to be a very

large number ok. So, these are going to be quite fairly closely spaced ok. The next thing

is that if you just look at your Bloch equation.



So you have, let us say I have psi n k of r is equal to now I will write this as E nk just

make sure I use the same notation I use the epsilon. So, let me write this as epsilon n k

epsilon n k is not a function of r times. So, now for each allowed value of k you have

some energy ok. So, let me write this in a slightly different way, I will write this as

epsilon n as a function of k ok.

So, for each allowed value of k you have some energy associated with it and you have

various energy levels. So, n is called the band index ok. So, what I when you solve this if

you could imagine solving such an equation then what you will get the solutions will

look like epsilon 1 of k epsilon 2 of k and so on ok. And now suppose I plot, suppose I

make a plot of epsilon versus k, suppose I make a plot of epsilon versus k, and I will just

show it schematically.

So we will come to the boundaries little later will describe this, but if you just make a

plot then you will get some energy. So, for each value of k you will have some energy for

a different value you will have some energy. And if you join all these let me mention that

let me mention that k can take several values. So, these are the allowed values of k and I

am just showing as though you were in a one dimensional system, but you can do this in

three dimensions two ok.

So, you have several values of k that are allowed ok. So, these are the allowed values of

k ok, remember k has to be this of this form ok. So, it has to be 2 pi m x by N x a a 1 ok.

So, it has to be integer multiple of 2 pi by L x, a a 1 times n x is L x. So, there are only

certain values, but actually its a very very large number of values these values are very

closely  spaced.  And for each of  them you will  have some energy, so if  you look at

epsilon 1 let me this is for epsilon 1 will have all these values ok.

So this is and epsilon 2, so this is epsilon 1 of k, if I look at epsilon 2 of k it might look

something like this and so on ok. Now what this what you see from here is that epsilon 2

has a range of values ok, so this is a range of values of epsilon epsilon 2. So, epsilon 2

lies can be anywhere in this range of values ok; similarly epsilon 1 can be anywhere in

this range of values ok.

So, there is a range of values of epsilon 1 and epsilon 2. We will come to this boundary

condition we will come to this part in the next lecture what we mean by this ok. This is

actually minus pi by a 1 and this is plus pi by a 1 ok. We will come to this; this is



actually the first Brionne zone ok, but we will just show explicitly that you only need the

wave function or the energy relation in this region ok. Now what you see is that this set

of states are closely spaced and this is called a band, this is also this is also a band ok.

So, there so there is a band of energy. So, you say that this whole range of energies is

what is called this band of energies ok. And this comes because your wave function as a

function of k has this kind of behaviour ok. Now n is called the band index and the

relation epsilon n of k this relation is called the dispersion relation ok. And this basically

tells you how this epsilon changes with k, how this energy of the nth band changes with

k that is called a dispersion relation ok. So we have qualitatively seen how bands appear

in this case ok.

And so this is the qualitative origin of bands. So, we have seen the qualitative origin of

bands ok. And in the next lecture we will see this more quantitatively; we will see this

qualitative origin of bands ok, that just comes from this dispersion relation and we will

see this  more quantitatively in the next lecture ok.  So, with this  I  will  conclude this

second lecture of week 11 ok. In the next lecture we will look at this in a little bit more

detail and we will refine the band theory of solids.

Thank you.


