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Now, I will start the 11th week of this course, and in the last 2 weeks of this course the

11th and 12th week,  I  will  change topics  and I  will  start  talking  about  topic  that  is

extremely relevant for solids and this is the theory of electronic structure of solids which

is also known as the band theory of solids. So, I will try to give the basic picture of the

band theory of solids and how it is used to describe the electronic structure of a crystal

ok.

And  so;  obviously,  this  will  involve  some  mathematics  in  particular  it  will  involve

quantum mechanics. But the level of quantum mechanics that will be required is quite

low. So, you will require just basics of particle in a box and maybe free particle and a

little  bit  of  qualitative  theory  of  bonding ok.  So,  that  is  about  the  level  of  quantum

mechanics that I would expect you to know ok. So, if at any time during these lectures

you feel that you do not understand the quantum mechanics then you should go back and

read the basic quantum mechanics of these topics ok. And; obviously, these are going to

be short lectures and they are going to be I am going to get at the crux of the band theory

of solids.

So, I mean band theory of solids is a very detailed and a very vast topic ok, but I will just

look at us at a few basic features of band theory of solids ok. So, we will start this in the

first lecture with free electron models and this is the first step, this is a step actually prior

to the construction of bands ok, but it is useful to learn this topic and it will also give you

a refresher of your basic quantum mechanics ok.  So, week 11 lecture 1 will  be free

electron models.
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So, let us write the wave function of a free particle; free particle and I will start with 1

dimensional free particle ok. So, just to remind you if you have just one particle in 1

dimensions then you can write the Schrodinger equation for this particle as minus h cross

square by 2 m d square by d x square and there is a wave function which is a function of

x,  x  is  the  one-dimensional  coordinate;  this  should  be  some energy  times  the  wave

function of x.  So,  this  is  the basic Schrodinger  equation and you can see that  up to

constants, it is just saying that d square y by dx square is a constant times psi ok. The

solution  of  this  is  what  is  called  a  travelling  wave.  So,  psi  of  x  if  you  solve  this

differential equation, you will get psi of x equal to e to the I will write it as i k x or psi of

x equal to e to the and I should put a normalization constant. So, I will just say I will put

a constant of proportionality before this A e to the minus i k x, where k is equal to square

root of 2 m E by h cross square.

So, you should be able to verify this, you should be able to substitute this wave function

in this differential equation and you should be able to see that it satisfies it and it is fairly

easy to see ok. So, what do these two wave functions represent? To find out what the first

let me call this the first wave function and this the second wave function ok. So, I will

denote it by psi 1 and psi 2 ok.

So,  now, if  you take  psi  1  of  x  and you calculate  the  momentum;  so,  how do you

calculate the momentum? You operate by the momentum operator. So, if you calculate



the momentum of the particle in state 1 ok. So, the momentum operator is minus i h cross

d by dx and if I operate this on the wave function on A e to the i kx what I will get is. So,

I have minus i h cross and then I have i k e to the ikx. So, I will let me write it out

explicitly i h cross d by dx I do not want to write d by dx.

So, if I take the derivative I will get A e to the i kx multiplied by i k and i into minus i is i

square is minus 1. So, minus i square is plus 1. So, you just get h cross k and what you

are left with is the same wave function that started with which is psi 1 of x ok; that

means, this h cross k is the eigenvalue of momentum. So, the momentum of particle in

state 1 equal to h cross k ok; so basically k, the k that we use in the wave function is such

that h cross k is the momentum, what about the energy? 

The energy, so we have k is equal to 2 m E by h cross square implies E is equal to h cross

square k square by 2 m ok. So, the energy of the particle is h cross square k square by 2

m and since it is a free particle there is no quantization, what we mean is that k can take

any value and energy can take any value ok. Now in state 2, the momentum in of particle

in state 2 will be minus h cross k minus h cross k the energy will be the same ok.

And so, this state 1 and state 2 are the state 1 represents a free particle with momentum h

cross k. So, it is travelling in the forward in the positive x direction, state 2 represents a

free  particle  with momentum minus  h cross  k.  So,  it  is  travelling  in  the  negative  x

direction. So, this is a free particle wave function in one dimension, you can extend this

to three dimensions and we have already seen this. I will come to that and before I talk

about confined particle wave functions.
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So, in 3 D, so the free particle in 3 D satisfy psi, now it is a function of x y z or r. So, r is

basically x y z this is A e to the i k is a vector and r is a vector ok. If you want to write in

more expanded form, you can write psi of x y z is equal to A times e to the i and you can

write k x times x plus k y times y plus k z times z, where momentum ok.

So, the momentum is a vector. So, P is a vector momentum and that is equal to h cross k

vector which can also be written as h cross k x i plus k yj plus kz k hat; ijk are the unit

vectors in the x y z direction ok. The energy of this particle is just h cross square, now

you have k vector square that is same as k dot k divided by 2 m. So, I can also write this

as h cross square. So, k square is k dot k I can write it as kx square plus ky square plus kz

square divided by 2 m ok.

So, this is a free particle wave function in 3 D and this  is the energy and again the

particle is moving with this momentum ok. So, now, momentum has components and

again there is no restriction on kx ky and kz ok. So, now let us go to a confined particle.

So, confined particle; so, let us say the particle is confined particle in 1 D between x

equal to 0 and x equal to L. You should have done this problem in your basic quantum

mechanics; this is a particle in a box in a box from 0 to L; so, your; so the wave function

psi of x. Now this wave function can be normalized and the normalization constant is

root 2 by L sin and now there is quantization. So, there is n x pi x by L ok.



So, this has energy equal to n x square pi square h cross square by x square pi square by

L square into h cross square by 2 m ok. I am deliberately writing it in this form, you

might also see it in the form n x square h square by 8 mL square; you might also have

seen it in that form. This is the, but it is equivalent I am writing it in this way just to

emphasize that this is your k x ok. So, what it says is that your k x is quantized by L and

n x equal to 1 2 3. So, k x can take only distinct values.

So, and since the k x can take only distinct  values,  the energy can also take on the

distinct values ok. So, this is a confined particle in 1D, if you have a confined particle in

3D with between with box size being L x, L y and L z ok. So, a 3D box with sides L x, L

y and L z will be represented by a wave function psi of x, that just looks like a product of

the 3 wave functions.

So, root 2 by L x sin n x pi x by L times root 2 by L y sin n y pi y by L and root 2 by L z

sin n z pi z by L z ok. So, that is a wave function and the energy is given by. So, I will

write it by h cross square by 2 m and then you have pi square by L square times n x

square plus n y square plus n z square and each of n x, n y, n z can be n x, n y n z; each

of them can take values 1 2 3 etcetera ok.

And now all this is all this should be familiar to you and if you are not familiar as I said,

you can go back to your basics of quantum mechanics and look at the particle in a one

dimensional  box and particle  in a three dimensional  box. So, these are exactly  these

functions.
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So, now let us; so, what is the basic idea of band theory of solids ok? This the idea here

is to describe the valence electrons in a metal and the general physical picture that we

have is the following that if I take a piece of metal; if I take a piece of metal this is a

crystal of the metal and there are several atoms. So, let us say there are several atoms

ordered in some array.

So, I am just showing some schematic picture, where there are several atoms in each

atom I am showing in blue ok. Now the basic idea here is that in a metal in a typical

metal each of these atoms some of the valence electrons of the metal will actually leave

the parent atom and it will freely move in the crystal.

So, I am just showing these valence electrons. So, let us say there is a valence electron

on the first atom on this blue atom. So, it actually leaves the atom and it goes it moves

freely around in the crystal. So, it moves around in the crystal and this will be true of all

the valence electrons in all the atoms and so you will have all these valence electrons that

are just roaming around and they come from different atoms and so, the idea is that these

valence electrons are not tied to any anyone atom and they are going to freely go around

in the metal,  and this  is  what  gives the metal  lots  of its  properties  like conductivity

etcetera ok.

So, the valence electrons of the metal they roam around throughout the solid and if you

take this piece of metal as having dimensions L x, L y and let me now just briefly show



the third dimension its L z L z then the basic idea is you can think of can think of valence

electrons as free electrons and I am using the term free in a slightly different context

here. So, here the context free means it is not interacting with anything ok.

So, they can move around freely, free electrons in a box in a 3D box ok. In the 3D box

has dimensions L x, L y and L z ok. So, you can think of valence electrons in a metal in

this way and this is what gives you what is called the free electron model and what it will

say is that your wave function for the valence electrons will have this free electron form.

Now, so, psi of so now, the idea is that there are lot of valence electrons in the crystal ok.

So, several valence electrons; so and if we assume that the electrons do not interact with

each other, so assume assuming electrons do not interact with each other then we can use

a free particle solution ok. So, the free particle solution let me write here. So, we can use

free particle solution for each electron each electron independently ok.

So, this is the idea of this is one of the ideas of the free electron model and. So, what

happens here? So, if you use this then for each electron I can write a wave function just

that just depends on the coordinates of the electron and that will look like that will look

like the following form. So, it will look like 2 by L x 2 by L y 2 by L z I am just taking

all these at the beginning and you will have sin n x pi x by L sin n y pi y by L, exactly

the expression that we had before sin n z pi z by L.

So, this is what the wave function will look like and the energy of the electron I will

denote it by energy this is by epsilon, this is energy of the electron when it is in state n x,

n y, n j; I am using that term, I am using the notation epsilon because this is 1 electron

and there are several electrons in the system.

So, for 1 electron this energy will look like h cross square by 2 m and then k square will

look like will look like pi square by L square times n x square plus n y; that is not correct

ok.

So, pi square n x square by L x square n y square by L y square plus n z square by L z

square and I think I have to make this correction in the previous slide also. So, I will just

go back and make this correction in the previous slide. So, this should be n x square by L

x square plus n y square by L y square plus n z square by L z square sorry about that. So,



this  is  going to be the energy per  electron.  Now what  there is  something else about

electrons, ok.

So,  electrons  are  fermions;  so,  are  fermions  and  fermions  satisfy  the  Fermi-Dirac

statistics, but basically, so, each energy level can have at the most 2 electrons ok. So, this

is one important restriction and this will turn out to be turn out to be important when we

actually analyze the free electron model ok. So, the picture is that you have such energy

levels for each of the electrons and each like each level can have at the most 2 electrons.
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So, what happens here? So, if you look at the energy level ok. So, I will just plot it here.

So, I will put energy on this axis epsilon and x, I will just call it epsilon this is the energy.

Now the lowest possible value is when n x equal to n y equal to n z equal to 1 ok, and in

this case you have and let me take for convenience take L x equal to L y equal to L z

equal to L ok.

So, I will just take this for convenience just for this particular case and so, when n x

equal to n y equal to n z equal to 1 then the energy will be equal to 3 h cross square by 3

h cross square pi square by 2 m L square ok. So, that is the energy. Now the next possible

value of energy is when one of n x n y and n z is 2 and now you can have 3 different

possibilities; I will just write them as 2 1 1.



So, n x is 2, n y is 1, n z is 1 or you can have 1 2 1 or you can have 1 1 2. And now the

energy is equal to 6 times h cross square pi square by 2 m L square ok. Then similarly

you can take the next level which will be 2 2 1, 2 1 2 and 1 2 2. So, I can write this as 2 2

1, 2 1 2, 1 2 2 and now the energy is equal to 9 h cross square pi square by 2 mL square

ok. Notice that there are 3 states that have equal value of energy for this ok. So, this state

is triply degenerate. The next one I will just show one more ok.

So, this is 2 2 2 and the energy is 12 h cross square pi square by 2 m L square ok. Now

what I want to say is that each of the electrons will have such a distribution of energy;

each of the electrons will have these energy levels ok. Now because these electrons are

fermions in each level they can be at the most 2 electrons ok. And so, if you take all the

valence electrons of the metal, then you keep filling them; you keep filling them, you

keep filling till you have till you exhaust all the valence electrons. And you keep filling

till how many? Let us say let us say you had a case where you had where you had 12

valence electrons ok.

So, if there are only 12 valence electrons this will be the configuration of the or this will

be the electronic configuration. So, the 12 electrons will be in these 12 states and what

you notice is that this is the highest occupied energy level.

Now, you can I am I mean here I took a case where you had only 12 electrons, but now

you can extend this concept to saying that if you have a large number of electrons. So, if

you have a if you have a piece of crystal which has N x which has N atoms then there

will be a total of N times the valency; valence electrons. And if you have a piece of a

crystal that is finite size, then this will be this could be a very large number ok.

So, N could be number of atoms could be billions of atoms ok. So, the number of; so, the

total number of electrons that we are looking at is of the order of billions ok. So, 10

raised to 9 electrons and now so if you look at this diagram you have to keep extending

this free electron picture all the way to 10 raised all the ways so that you can fill as many

as 10 raised to 9 electrons. Well, if you go ahead and do that then what you will get is

that you will have this energy and you will have several states and all you will have

several states, you will have a very large number of states. And what you will find is that

when you fill all the electrons then a certain number of them will be filled ok.



And the last energy level that is filled this is called the Fermi energy; this is called the

Fermi energy. Now I will just I mean it is rather important to distinguish this from the,

this is not equal to Fermi level, strictly this is not equal to except at T equal to 0.

So, except at T equal to 0 Kelvin and we will see this as we go along ok, but the point is

that the Fermi energy is defined in terms of the energy levels and so, at T equal to 0

Kelvin, the this will be the at T equal to 0 Kelvin you will start filling the energy levels

from the bottom and you will only fill the lowest energy levels. At higher temperatures

you could have some higher levels also filled up and you could have some lower levels

being empty, but at T equal to 0 you will only fill up starting from the lowest energy

level and the energy level the highest energy level that is filled is called the Fermi energy

and this is a concept that we will be using a lot. 

It is denoted by the symbol E F this is the Fermi energy and we will see that for a free

electron model since EF is related to the wave vector k, since for a free electron model

you have EF; E is related to k. So, we have E is h cross square k square by 2 m, now we

are talking about electron.

So,  it  will  be  mass  of  the  electron  ok  then  the  Fermi  energy  has  a  wave  vector

corresponding to the Fermi energy that is called k F that is called the Fermi wave vector

ok. So, these are two concepts that we will be using a lot and we will be considering the

case where we do not have this free electron model ok.
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So,  now let  me conclude  this  lecture  by  saying what  are  the  limitations  of  the  free

electron model ok so, first thing is electrons see lattice ok. So, electrons are not just free

they are actually they actually see a lattice ok. So, and so lattice has I would say, I mean

atoms and since we removed the electrons,  actually  they are positive ions.  Since we

remove the valence electrons from these atoms, so, what will be left is actually positive

ions and so what this picture of the metal will look like is the following.

So, if you look at valence electrons, now the valence electrons ok. So, even if the valence

electrons were allowed to roam around in the crystal they would see a lattice of positive

charges.

So, what the valence electrons? Even if they are allowed to go around in the within the

crystal they will not just be able to freely move they will keep seeing the lattice ok. So,

they will they are just not able; there they are not completely free as in they cannot just

run from one end to the other, they will experience they will see this periodic lattice ok.

And so that is the first thing.

The second thing second and third points are the second point is slightly more subtle is

that, electrons are correlated and they interact; that means, since all the valence electrons

are moving around this crystal they will see each other. So, one electron will see the

other the other electron ok.

So, it is not just moving freely, it will encounter the other electrons. So, it will see the

other electrons and it might and that might affect its motion and so this picture has to be

modified to take electron interactions and electron ion interactions ok. So, these are some

of the limitations. Now also you should keep in mind that electrons satisfy something

called a Fermi Dirac statistical distribution; Dirac distribution at temperature T ok. So,

what that means is that the distribution of electrons in different levels follows this Fermi

Dirac distribution and we will see this in more detail ok.

Now, what we will do first is to take the effect of this periodic lattice ok. So, electrons

should see a lattice. So, the electrons should experience some forces which are periodic

ok. So, the next topic that we will be doing in the next lecture is to look at electrons in a

periodic potential ok. This periodic potential is due to the lattice of ions, due to lattice of

ions of ions ok. And at this point a couple of things I want to say I am not going to make



a distinction between lattice and crystal, I am just going to talk about lattices ok. So, you

can think of them as a single atom basis ok.

So, I am just going to talk about lattices because that will be sufficient to give the basic

concepts, the other thing is in this course. So, once we see electrons moving in the lattice

we will automatically see the emergence of bands ok. So, I will not really be talking

about correlated and interacting electrons ok. In the next lecture we will talk about how

electrons move in a periodic potential, and we will see how, just even if you even if you

have electrons that do not interact with each other, even if you have electrons that are

freely moving throughout the crystal ok.

But so long as they experience this lattice of ions, you will see that they will naturally

form bands ok. So, that will be in the next lecture.

Thank you.


