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Close-packed structures and voids

Now, I will start the 10th week of this course. And in this week you will see the common

crystal structures. So, it will be you will look at various crystal structures of elements of

simple binary compounds and a few oxide compounds and these are the common crystal

structures  that  you  encounter  in  lot  of  materials.  So,  in  a  sense  this  will  be  fairly

descriptive and it will be nice to see how some of the concepts that we have talked about

so far in this course they actually apply in the calculation of in the actual structures of

different materials.

So, it will be in some sense it will be rewarding because all this work we have done

about structures and symmetry and packing and so on. We will actually be applied to see

how to understand the structures of different crystals. And I will start this 1st lecture of

the 10th week with discussion on closed packing and voids and as I had said earlier that a

lot of crystal structure can be understood in terms of thinking of atoms as spheres which

pack into a space ok. So, week 10 in the 1st lecture we look at Close-packed structures

and voids. 
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What are close-packed structures? As we already learnt the FCC or the cubic closed-

packed and the HCP that is a Hexagonal Closed-Packed or closed-packed structures and

they have a packing fraction of 0.74 and that is the highest possible packing fraction if

you have spheres  ok.  So,  if  your  atoms are  perfect  spheres,  then  this  is  the highest

packing fraction that you can get. 

The body centered cubic has a packing fraction of 0.68 and the simple cubic has a flat

packing fraction  of  0.52.  This  is  the  monatomic  BCC crystal  and similarly  this  is  a

monatomic simple cubic crystal.  And as I  had already said that  this  idea of packing

assumes that the atoms are spheres and intuitively we feel that the most efficient packing

should be preferred because they would like to pack very closely to each other ok. So,

you might expect that most of the structures you will see are FCC and HCP, but the fact

is that atoms are not spheres and there are orbitals ok. So, the bonding between atoms

goes through orbitals and there is a directionality in the bonding. 

So, what we will see is that even though you would expect most of the atomic crystals to

be  FCC or  HCP, we  will  find  that  significant  number  of  them  are  BCC and  other

structures. 

(Refer Slide Time: 03:33)

So, let us look at the crystals of elements. So, I am just listing some elements and they

are crystal structures. So, if you look at the cubic closed-packed or the FCC, you have

copper, silver aluminum, gold, nickel, lead. These are some of the metals that form a



cubic closed-packed the hexagonal closed-packed. You have barium, magnesium, zinc,

cadmium, titanium, zirconium. These are just some of the examples. 

For BCC Body Centered Cubic you have ion actually also forms an FCC, but at much

higher  temperatures  at  more  than  1000  Kelvin.  Chromium,  molybdenum,  tungsten,

tantalum, barium, these all form body centered cubic structures. Simple cubic there is

only one example of an element that crystallizes in simple cubic that is polonium .There

is  a  hexagonal  structure  like  for  example  graphite,  carbon  in  the  form  of  graphite

crystallizes  in  a  hexagonal  structure,  there are  several  tetrahedral  materials.  We have

already seen the diamond structure of silicon or diamond carbon or germanium. 

There are several others ok, then there are some elements that actually crystallize in a

rhombohedral structure with a space group R3m. So, some of these examples are arsenic,

antimony and bismuth. So, this is actually you know the trigonal crystal system can have

either the trigonal or the hexagonal and you can have the hexagonal or the rhombohedral

ok.  So,  this  comes  in  the  rhombohedral  crystal  system  ok.  Arsenic,  antimony  and

bismuth are some examples of this ok. So, what you notice is that there is no clear trend;

no clear trend ok, you cannot say that heavier elements for prefer certain structures or

something of that. We notice that arsemenic arsenic antimony and bismuth are in the

same period ok.

So, there is some similarity for example carbon, silicon, germanium, they are in the 4th

row of the period the 4th period and they also have tetrahedral structure. Similarly the

rhombohedral  elements are in the 5th period.  And so, there is some trends ok,  some

trends with periodic table some, but it is not overall  there is no clear trend. And for

example, there is no clear understanding of why iron is BCC whereas, copper is FCC and

really these are just; these are just the crystal structures that are observed and it turns out

that the electronic structure of these elements makes them prefer a BCC makes ion prefer

a BCC whereas, it makes copper prefer of prefer an FCC ok. Now these are some of the

crystals of elements. 

Now  one  of  the  very  useful  concepts  when  you  go  to  crystals  of  multi  element

compounds for example binary compounds. What we like to think is  that  we like to

visualize these elements as forming some crystal structure and then the other element

occupies some voids in that structure ok.
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So, we will come to the concept of voids in the cubic closed-packed structure. And now

here I am showing; I am showing 2 layers of a cubic closed-pack structure ok. So, the

black circles this black circle represents the bottom layer and the next layer on top is

represented by blue. So, these are atoms that form a cubic closed-packed array ok. I am

just showing 2 layers. 

Now, the difference between hexagonal and cubic closed-packed comes in the 3rd layer

in the hexagonal closed-packed. The 3rd layer is on top of the 1st layer on top of this

black layer whereas, in the cubic closed-packed its actually in the its directly on top of

these  green hexagons ok.  So,  that  is  where the  3rd layer  would  be,  but  we are  just

looking at these two layers and what these two layers if you just look at these two layers,

you  know  we  can  immediately  identify  location  of  voids  in  cubic  closed-packed

structures ok.

So, what do we notice is that this black circle ok, this black circle it is now imagine that

it is at the center; it is at the center of 1 2 3 and 4. The 3 black; the 3 black circles and

this blue circle. So, it is right at the center of these four and clearly it is in a tetrahedral

void. So, all these black; all these black filled circles they correspond to tetrahedral voids

ok. Now there are other tetrahedral voids which are indicated by these red circles again

very similar to the black circles. 



The only difference is that in these red circles ok. So, there is one they are directly on top

of this black atom and they are in the middle of these 3 blue atoms ok. So, in a sense the

orientation of the tetrahedron around the red and black circles is inverted ok. So, with

respect to the black filled circles ok, the orientation of the tetrahedron has 3 bonds going

down and 1 bond coming up whereas,  the red one has 1 bond coming, has 3 bonds

coming up and 1 bond going down again. Please excuse the fact that I have I have not

drawn these exactly ok. So, actually the location of some of these dots is not precise, but

you can clearly make out where they should be ok. 

So, we can immediately what this tells you is that these tetrahedral voids are going to be

there in any cubic closed-packed structure whether it is HCP or FCC. And similarly the

octahedral voids they will be located ok, they will be located right here at the center of

these 3. So, if you look at this green hexagon ok, now that is equidistant from these 3

blue circles and these 3 black circles ok. So, clearly it is equidistant from these 6 circles

and this  is  going to  be  a  octahedral  void  ok.  Again  I  should  emphasize  that  this  is

actually below the blue atom ok. So, it is in between the blue layer and the black layer

ok. So, the black layer black open circles are the bottom layer.

On top of that or the blue open circles and in between those two right at this center right

here, there is a octahedral void, there is an octahedral void and the end due to periodicity

it is there in all these locations. So, what this shows is that you can immediately identify

the tetrahedral and octahedral voids in both and hexagonal closed-packed and a cubic

closed-packed ok. As I said a cubic closed-packed the 3rd layer will be directly on top of

these hexagons in a hexagonal closed-packed. The 3rd layer will be directly on top of

these black circles ok, however let us I mean in. So, also we should keep in mind that for

cubic closed-packed. 

The closed-packed direction is actually the 111 direction of the crystal. That means, this

screen ok. Screen is the 111 plane ok. So, that is the closed-packed direction and you can

easily take cubic closed-packed or an FCC structure and see this packing arrangement

and what it says is that you know whether you have an FCC or an HCP, you can identify

the location of the voids and for the and so, this is very useful and if you go back to the

lectures where we discussed the location of voids and HCP. 



You can go back and confirm that these were indeed the location of the voids. Now, what

is interesting about these voids is that these voids are spaces where you could in principle

fit an atoms ok, but if you wanted to fit an atom in a void, you need to know the size of

the void. And again so, we are going to do some calculations from the with respect to the

size of the voids. Now, let me emphasize one point which might not have been clear is

the following that you know we usually show the FCC structure in the form of a cube. 

So, we usually show it in the form of a cube and we show; and we show the location of

the voids ok. So, the tetrahedral voids as you are familiar will be located along the body

diagonals along each of the body diagonals.  So, there are 8 tetrahedral  voids located

along each of the body diagonals. I am not focusing on the sign of these tetrahedral voids

ok, but you know that there are 8 of these located along the body diagonals ok. These are

what I want to emphasize that these are exactly the same as shown here ok. There is no

difference between what is shown in this diagram and in this figure ok.

So, the tetrahedral voids exactly the same locations that are described here this is just a

different  way of looking at  the structure.  In fact,  you are looking at  it  from the 111

direction which is which can be shown as let us see if we take this as the origin x y z. So,

we  can  take  this  as  the  111  direction  has  a  111  plane,  for  actually  the  screen  it

corresponds to this plane. And if you look; if you look in this plane, then you will get

you will see exactly the structures that we are seeing here. And now if you go to the layer

below this plane ok, then you will see the packing arrangement that is seen here and you

can immediately identify the tetrahedral voids and you can show that what you see in this

figure is the same as what you see here. 

Similarly, for the octahedral voids octahedral voids you know are located at the edge

centers and the body centers. So, there is one right at the body center that is an octahedral

void I will use the green colour and located at each of the edge centers and again this is

exactly the same that you see in the other figure and until  you draw it and convince

yourself ok, you will not be sure of this ok. So, these two are two different ways to look

at the cubic closed-packed structure. Now let us calculate the radius of these voids.
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Now, to calculate the radius of the voids I will start with the; I will start with the cubic

closed-packed, but is the same for the HCP. So, if you look at a cubic closed-packed now

for the tetrahedral void; for the tetrahedral void, we know that so we have. So, now the

tetrahedral void which along is located along the body diagonal and it is located at 1 by 4

at one-fourth of the way along the body diagonal ok. So, I will just show a tetrahedral

void here and along the body diagonal ok. So, this is a corner and let us say this is a

tetrahedral void. What you have is something like this. You have a your sphere which is

the atom and you have the void and you know that this distance is a root 3 by 4. 

And that is equal to r of the atom plus r of the void. And now r of the atom this again let

me remind that r is the radius of the atom and a is the size of the cell ok. So, r of void is

equal to a root 3 by 4 minus. Now r r of the atom r of the atom can be related to the

lattice parameter because along the face diagonal you have a root 2 equal to 4 r ok. So, r

is equal to a root 2 by 4 ok. So, then I can write this as root 2 by 4. So, you get the size of

the tetrahedral void a times root 3 minus root 2 by 4 ok.

So, this is the radius of the tetrahedral void in terms of this in terms of the cell parameter

a ok. Now this is the radius of a tetrahedral void in a perfect assumes atoms form a

perfect FCC. So, in the sense we impose this condition which is only true if the blue

atoms form a perfect FCC and then we use you use this condition to find the size of the

tetrahedral void ok. Now, what I mean is that if you actually squeeze an atom ok, then



the FCC might get distorted a bit ok, but still for in a perfect FCC this is the size of the

void ok. Now, interestingly you can ask what is the ratio of the radius of the void to the

radius of the atom. So, this is root 3 minus root 2 divided by root 2. 

So, this is the ratio of radius of the void to the radius of the atom. So, all I did was take

the radius of the void divided by the radius of the atom ok. So, this is for the tetrahedral

void let me put a t in front next to the void ok. So, this for the tetrahedral void you can do

for the octahedral void, now for the octahedral void ok. Again you can just go; you can

just go along the edge and you can easily calculate that. So, for the octahedral void you

have radius of octahedral void plus radius of atom this is equal to a by 2 ok. So, you can

immediately see that the radius of octahedral void is equal to a by 2 minus a root 2 by 4

ok.

And further you can also do the same. You can divide by a root 2 by 4 to get the ratio of

radius of octahedral void divided by radius of atom. This is 2 minus root 2 by root 2. So,

we can work these things out and these are useful relations. You can do the same for

hexagonal ok. You can if you want you can start with the HCP structure and you will get

essentially the same result ok. So, the size of the voids ok. So, what this says is that you

can fit another atom of this size ok, but now if you calculate these fractions ok, so this is

of the order of ok.

So, this is only about this is only this is less than 25 percent ok. So, what this says is that

the atom that you can fit in the tetrahedral void has to be extremely small ok. It has to be

extremely small if it has to fit and if it has to fit in the tetrahedral void and keep the

structure intact and clearly that seems very unreasonable. In fact, we will see structures

like the zinc blende where the atoms fit in the tetrahedral void, but the size is a lot more

ok, size is not the ratio of sizes is not this small ok.

So, that is what I meant by saying that you know this is in a perfect FCC, but there can

be distortions. Similarly this is about and this is about this is much higher ok. So, this is

nearly about 0.43 0.42 and yes I mean this is significantly larger ok, but still it is much

smaller than what you would expect ok. So, this is about the size of the voids ok. 
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Let us look at something that we sort of skipped when we did the hexagonal closed-

packed structure and this has to do with an ideal hexagonal closed-packed structure. Now

what do I mean by an ideal hexagonal closed-packed structure? Now, let me draw the

hexagonal closed-packed structure in the way that you are used to seeing ok. 

So, this is where you show hexagonal say structure and what you have is you have these

atoms here and you have the next layer which the layer below will have 3 atoms and

then, you have another layer below where you have 6 atoms 6 or rather. And now the

reason I am showing it this way is the following that this distance in a hexagonal in a

high HCP, this is called c and this lattice parameter is called a. 

Now, if you take a unit cell of this what you will see is the following that let me draw it

in the following way. So, you have a b c, this angle is 120 degrees and now the question

is if you have an ideal hex HCP then it turns out that there are some further constraints

ok, c has to be related to a, c is not completely independent of a ok. So, this side is a and

this side is c. So, there are 2 parameters ok. So, you have a equal to b and gamma equal

to 120, alpha equal to beta equal to 90 and in an ideal HCP ok. Now there is going to be

one other atom that is located right here inside this inside this cell ok.

It is not right at the center ok, it has to be it has to form a it is located in a it is located in

this it is located at the center of these 3 atoms ok. So, what this tells you is the following

that this distance in an ideal HCP should also be a ok. So, if it was perfectly closed-



packed, then this distance this diagonal distance should also be a. This distance let me

show it in red ok. So, this is from this corner to the center of this atom ok. So, that

distance should also be a and it turns out that this. So, you immediately have a relation

now you know that this is related to c in this way ok.

So, you will get a relation between c and a. Now, let us work out that relation now. So,

you  can  let  us  see  the  location  of  this  atom  and  for  this  let  me  use  the  planer

representation.  So,  in  the  planer  representation  I  have  ok.  So,  I  have  these  4 atoms

located here and then, I have this center atom is located at height c by 2 along this ok.

So, let me these are all at z equal to 0; z equal to 0 and this is located at z equal to half

and you know that this distance is a z is z equal to half or c by 2 more like c by 2 ok.

So, now let us look at the coordinate of this atom. So, the coordinate of this atom in blue

this equal to, so let me make a choice of the origin. I will choose a this is my b ok. So,

the coordinate of that is clearly the x coordinate is 0, it is located right here. So, the x

coordinate is 0, the y coordinate now y in order to find the y coordinate you have to find

this distance and this distance can be found out from this angle ok. So, this distance can

be found out from this angle. So, it is a by 2 divided by cosine of this angle. 

Now, cosine of this angle is root 3 by 2 ok. This is a 30 degree angle. So, the cosine of

that is root 3 by 2. So, this is equal to a divided by root 3 ok. So, the y coordinate is a by

root 3 and the z coordinate is c by 2 ok. So, now if you take a distance from the origin of

this point and the origin is located at one of these origin is located right here ok. So, now

if we take a distance from origin ok, then you can immediately find the you can say that

a square by 3 plus c square by 4 that is the distance of this blue point from the origin ok.

This should be equal to a by 2 square; a by 2 is square is sorry it should be a square. 

And this immediately implies that c square by 4 is equal to 2 a square by 3 or c by a is

equal to square root of 8 by 3 and this works out about 1.63 ok. So, this is the ideal ratio

for a hexagonal closed-packed. So, if the atoms were really closed-packed, then the c by

a ratio would be exactly 1.63 in a hexagonal closed-packed structure.
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Now, let us look at an ideal cubic closed-packed structure. As I had already said in an

ideal cubic closed-packed structure, the face centers should be touching each other. So,

let me again draw this. So, we just take the planar representation ok.

Now, it should be such , so in an ideal cubic closed-packed structure you should have

now you have only; you have only one parameter a, so, a root 2 ok. So, this distance

which is a root 2 should be equal to 4 times the radius of your atom ok. So, this is an

ideal cubic closed-packed structure in the sense the atoms in blue are forming a perfect

closed-packed structure ok. 

So,  interestingly  so  unlike  the  hexagonal  closed-packed  structure  were  we  had  a

parameter  c  in  this  case  there  is  no  additional  parameter  and  again  this  is  just  a

convenience  of  notation.  I  mean  if  we  had  directly  imposed  the  condition  for  ideal

hexagonal closed-packed structure in that case also we would not have any independent

parameter c; c would be equal to a into root 8 by 3 ok.

So, with this I will conclude this lecture, I will conclude this 1st lecture. So, here we

have seen the idea how the idea of closed-packing can be used to understand the sizes of

voids and also we saw the structures of simple elements. Now, in the next lecture I will

look at and look at binary compounds and see how these can be understood in terms of

closed-packed structures and atoms in voids.



And we have already seen this in several examples like the most common example that

we see of the rock salt and the cesium chloride or the zinc blende structures ok. So, these

are all these all can be understood in terms of one of the elements forming a closed-

packed structure and the other elemental in a void. So, we look at this in more detail in

the next lecture.

Thank you.


