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Lecture – 34
Thermodynamics of defects in crystals

In  the  4rth  lecture  of  this  7th week  of  this  course,  we  will  talk  about the

Thermodynamics of defect formation. We look at very basic thermodynamics and a little

bit of statistical mechanics ok. So, this will be slightly mathematical, but it is not very

difficult ok. So, week 7, lecture 4 will be Thermodynamics of defects in crystals.

(Refer Slide Time: 00:40)

Let us again remind ourselves of the types of lattice imperfections in crystals. We saw

point  defects,  line defects,  planar  defects,  bulked effects and lattice  distortions.  Now

most of the thermodynamics that we will be talking about will be in the context of simple

point defects, but you can also extend them to line defects. Only thing we will realize

that things are more difficult to calculate for line defects and other defects. 



(Refer Slide Time: 01:17)

So,  what  is  the basic  thermodynamics  of  defects?  So,  the  basic  thermodynamics  of

defects has to deal deals with the idea of entropy and temperature. Now the idea is that

defects increase energy of crystal; energy of crystal that means, they are energetically

unfavorable ok. Now however, presence of defects increases entropy; presence of defects

increases entropy; entropy of crystal that means entropically favorable. 

So, you want to have higher entropy and you want to have lower energy ok. So, the

defects increase  the  energy.  So,  they  are energetically  unfavorable,  but  they  are

entropically favorable ok. And now, if you look at let us say you say delta you imagine

some relation like delta G is delta H minus T delta S and let us say delta equal to the

difference or I will just say delta G equal to G of perfect crystal minus G of defect crystal

or yes or let me write it the other way.

Delta G is G of defect minus G of perfect and so if the G of defect is lower than the G of

the perfect, then the defect will be far favored ok. And what we realize is that if you

write in this way, then you have delta H is equal to an enthalpy of the defect; the defected

crystal of the crystal with a defect minus the enthalpy of a perfect crystal and we know

that the enthalpy or the energy of defected crystal will be higher than that of a perfect

crystal, so, this is greater than 0.  And similarly delta S which is entropy of a defected

crystal minus entropy of a perfect crystal, this will be less than 0; no sorry, this will also

be greater than 0.



So, the defective crystal also has higher entropy and so, what that means is that if your

temperature is very low, if your temperature is very low ok, then the effect of enthalpy

will be negligible and so, delta G will be greater than 0 so, defects will not be favored ok.

So, at low temperature, there you will have very few defects at high temperature you will

have more defects.

So, this implies more defects on the period in a different color; more defects at higher

temperatures. So,  physically you can understand this, you can imagine that you know

you have this crystal where all the atoms are at their perfect lattice positions and there for

me you know as you heat the crystal ok. Then, the atoms start vibrating a little bit from

their lattice position. As you heat it more and more, then they start vibrating more and

more and at some point, they start leaving their lattice position and they start forming

defects ok.

And so, as you increase the temperature more and more you will have more and more

defects and so, all this intuitively agrees with our idea of defects and you know how of

having more defects at higher temperature. Now, let us look at this idea of entropy ok,

we I said that the presence of defects increases the entropy.

Now, how do we understand this? How do we understand this statement at the presence

of defects increases the entropy ok? To understand this we need the idea of what is called

configurational entropy and I will just take one example ok. I am taking one particular

example ok, I am illustrating let me emphasize that this is an illustrative example. It is

not a; it is not a general formula for configuration entropy or anything it is an illustrative

example of how configurational entropy works ok.

So, imagine you have a crystal and let us say you have this crystal with various sites

which contain atoms and for simplicity let us just take a on a monatomic crystal and let

us say you have N sites ok. So, there are a total of N sites ok. Now so this crystal has a

total of N sites and now each if each of those is occupied by an atom ok, then you will

have a configuration where there is no vacancy ok.

Now, suppose I say that there is one vacancy in the crystal. Now consider one vacancy;

only one vacancy ok. Now immediately you will say that this vacancy can be in any of

the  N  sites;  can be  at  any of  N sites  ok.  So,  basically there  are  N possibilities;  N



possibilities ok.  I  am  using  the  word  possibilities  a little  loosely  in  a  more  precise

language of statistical mechanics we will say there are N configurations ok. So, actually

let me use about configurations ok. 

So, if you have just 2 vacancy, as you said it can be; it can be in any of these N sites. So,

there are N configurations and you can see what will happen, if you have 2 vacancies ok.

The you can choose; you can choose one of them from the N configurations; the other

one from the remaining N minus 1 configurations and obviously, their order does not

differ. So, you have total of N choose 2 configurations. So, it is a usual combinatorial

factor and N choose 2 ok. The expression for N chose 1 is N factorial over 2 factorial N

minus 2 factorial. So, let us continue.

(Refer Slide Time: 10:59)

Now,  suppose  you  have  N  vacancies  ok,  I  am  continuing  the discussion  on

configurational entropy. Suppose, you have N vacancies, then the number of choices is

number of configurations is N choose m configurations ok.  This is equal to N factorial

divided by m factorial N minus m factorial ok.

So, now the entropy the Boltzmann entropy expression S is equal to k times natural log

of  omega  which  is  the  number  of configurations. And  so,  basically  if  you  have  a

configuration  with  m  vacancies  ok,  a configuration  with  m  vacancies  will  have an



entropy of I should write this k B; this is Boltzmann constant. So, this is k B natural log

of now the number of configurations is N factorial divided by a m factorial ok.

So  now  the  Boltzmann  formula  for statistical  mechanics  ok;  so,  the Boltzmann

expression  for  statistical mechanics  is  valid  when you have  a  very large  number  of

configurations  ok.  When the  number  of  configurations  is  very large  that  means,  the

number of site is very large and the number of defects is also very large ok. So, when

both N factorial and m factorial are both very large and in fact we also assume that N

factorial is ok. So, both N factorial and m factorial are very large ok.

And  in  this  case,  you  can  write  you can  use  something  called  the  Sterling’s

approximation; well fine. Before we mention that, I will just; I will just show ok. So, if

you just take this function, if you just take this function and you just make a plot of it. If

you just plot S versus m ok, when m equal to 0; m equal to 0, then S is then basically you

have natural log of one which is 0. So, entropy is 0 there is only one configuration ok.

So, you start at 0, then it increases with m ok. It keeps increasing with m and it reaches

maximum when m equal to N by 2 and it goes down and again goes to 0 when at N m. In

fact it is a perfectly symmetric its a usual binomial distribution ok. This is S of m as a

function of m ok. Now usually the number of defects is very small, it is much less than N

so, you are only; so, you are only in this region ok, you are only in this region of the

graph ok.

So, you so, your m is usually very small much smaller than N ok. However, you can see

that as you increase the number of defects, your entropy goes up and so this entropy is

called the configurational entropy and that tells you why you know just based on number

of configurations available, you can see why defects increase entropy.

Now, again let me emphasize that I  took this for the particular example of I took it for

one illustrative example of a you know defect occupy occupying a site, but this can be

generalized for all kinds of defects ok.  You might not be able to arrive at such simple

expression for other kinds of defects ok, but in any case the entropy will increase as you

increase the number of defects ok. 



Now, the next point is the defect formation energy, I will call it Ed ok. This is the energy

of crystal or you can say energy of crystal with defect minus energy of perfect crystal

and this Ed is huge is greater than 0 because the crystal with a defect has higher energy

than the perfect crystal ok. And now, if you take the particular case of this vacancy at a

site then what you have to do is to so let me just take an example. If you have; if you

have a crystal, I will just show a small piece of a crystal. This is the perfect crystal, I am

just showing this set of 9 atoms and now let me say that now I have a defected crystal,

where let us say one of these atoms is missing.

So, let me show the defected crystal in this way. So, I  say that one of these atoms is

missing. I am just showing a small piece of a crystal ok. So, you should imagine that the

crystal is extending in all directions and this is just one part of the crystal. Here there is a

defect ok. Now what I am showing in the red is the missing atom ok. Now obviously,

because of this missing atom, there will be some you know the interactions of the crystal

or that were there in the perfect crystal.

So, in the perfect crystal, this atom these two atoms were interacting with each other;

these were interacting with each other; these were interacting with each other and that

would that was what was holding the crystal together ok. Now when you do not have this

ok; you do not have all those attractive interactions. So, it its actually energetically less

stable and its energy is higher and now you can see that you know how do you know

simple way to calculate defect formation energy ok.

So, no obvious way; calculate Ed ok, but you can imagine; you can imagine that if there

is some way you could calculate the energy and for those who are familiar with quantum

mechanics, you can think that I can do a calculation and I can calculate the energy of a

configuration with a defect and a configuration without a defect and I can take their

difference ok.

But in any case there is no obvious way ok, but and this is only for the case of point

defects. You can imagine that for line defects and you will get more complicated for

other defects ok.  So, but then having this idea of defect formation energy is extremely

useful ok. You know just way to calculate it nor is there an obvious way to measure it ok,

but there is something that you can get from this defect formation energy; something that

you can read that you can relate the defect formation energy to ok. That is the following.
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You can relate  you can use something called  a Boltzmann factor  and relate  this  and

connect this defect formation energy to defect concentration ok. So, the idea is that your

defect formation energy. So, E d is from here you go to number of defects, this is number

of defects. Actually it is not the number ok. So, it is the fractional number ok; it is the

number fraction.

So, I will say it Nd by total N. So, this is a number fraction of defects ok. So,  this is

something that you can do using the Boltzmann factor alright. So, how is this done ok?

So, the idea is very straightforward ok. What the Boltzmann factor says is that if you

have two if you have a configuration of energy Ed higher ok. So, if you have; if you have

two configurations and if you have N 1 of energy E 1 and N 2 of energy E 2 ok.

So, let us say you have N 1 is the number of configurations with energy E 1 and N 2 is a

number of configurations at energy E 2 and let us say the whole thing is at equilibrium at

temperature T ok. Then, N 1 by N 2 is equal to E to the minus E 1 minus E 2 divided by

kB T ok. So, essence let me write it in a slightly different way. So, it is equal to this

divided by E to the minus E 2 by kB T and you can expand you can write this as E to the

minus E 1 minus ok. So,  this is a Boltzmann factor that comes from thermodynamics

from statistical mechanics. So, N 1 by N 2 equal to E 2 the minus E 1 minus E 2 by kB T

ok.



So, now you can say number of configurations with the defect divided by number of

configurations without the defect. So, number of configurations without the defect is N

minus  N d  ok.  This  is  equal  to  E  to  the  minus now the  difference  in  energy  of  a

configuration with a defect and without the defect is just E d . And so, basically this is a

factor that tells you how the number of defects changes with temperature that means, at

very low temperatures when temperature is very small, then E to the minus E d E d by

kB T. So, this E d by kB T will be very large. So, you have E to the minus a very large

number and it will be very small.

When temperature is very large, E to the minus this will go to 0. So, this will go to 1, so,

the number of defects will be large. In fact, we usually work. So,  usually N d is much

much less than N ok. So, the defects are very few ok. They are usually in parts per

million or even smaller parts per billion and so, because N d is much less than N, you

can just write this as N d by N ok. This N minus N d, I just replace it by N that  is very

close to N ok. So, this is equal to E to the minus E d by kB T ok. 

So,  the  fractional  population  of defects  is  proportional  to  E d by kB T ok.  So,  this

Boltzmann  factor actually  relates  the  defect  formation energy  to  the  defect

concentrations  and notice  that  this  way we so,  we  did not  we did not  explicitly  use

entropy. So, did not explicitly use entropy use entropy and in fact, the fact that we are

using the Boltzmann distribution automatically implies that we that we are using entropy,

but we did not have to go through that entropy calculation that we did in the other case.

So, we could just use a defect formation energy and use temperature to estimate the

fraction of defects ok.
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So, now let me use this for one particular for two particular examples. We use it for the

Schottky defect and the Frenkel defect ok. Now you should keep in mind that each of

these defects ok, have slightly different origin ok. And in a Schottky defect, so let us take

then heads first take the example of a Schottky defect ok. So, if you take the short key

defect and let us take an example in NaCl. So, then what would happen is that a sodium

atom at a crystal site and a chlorine atom also at a crystals site will have to leave their

crystal sites and go to the surface ok. So, one sodium and one Cl atom leaves its site,

leaves their sites in the leave one Cl once here leave their sites and move to the surface

sites; I will just say surface sites ok.

So, this corresponds to 1 Schottky defect ok. So, 1 Schottky defect, so, this corresponds

to 1 Schottky defect. So, 1 Schottky defect corresponds to 1 sodium defect and 1 chloride

to defect ok. So, now if you look at this in the following way you look at this as a sodium

at the lattice site plus a chloride at the lattice site ok. So, I will just say crystal ok. So,

this is sodium and chloride at their proper crystal sites and these are going to sodium plus

at the surface and chloride minus at the surface ok.

So, this is what is happening and then, you form those two defects all right and if you

look at this; if you look at this as an as an equilibrium reaction ok, then the equilibrium

constant  K; K is  given by number of sodium at  the surface which is  the number of

vacancies ok. So, number of defects number of chloride at the surface which is it is also



the number of defects divided by number of sodium plus at crystal site which is just

which is just N minus N d and N minus N d is a number of chlorides at the at their

crystal sites ok.

So, the equilibrium constant can be written in this way and again, if we assume that N d

is less than 1 less and N d is much smaller than N this is approximately N d by N square.

And you can use the relation that. So, what this will eventually lead to I mean if you can

work you can work this out in the following way, you can write that delta G is equal to

minus RT l n K and you can use this to write N d by N is equal to e to the minus delta H

by 2 RT e to the minus delta S by 2 R plus e to the plus delta S by 2R ok.

So, all I did was I wrote I just inverted this relation, I wrote I replace K by N d by N

square and I took; and I took R T to the bottom here, I took this factor of a. So, we see

that there is a factor of two that comes with the delta H in the case of Schottky defect and

again, you can do for the Frenkel defect and also calculate the same ok. So, you can do

the same for the Frenkel defects. Again, in this case; in this case you will get; you will

get exactly the same factor, but in this case you have a let me take the case of AgCl. So,

you have an A g which is in the lattice in the crystal site and you have a vacancy in the

interstitial site ok.

So, this is a vacancy or a vacancy interstitial site and this is going to; this is going to Ag

in the interstitial site and vacant Ag site ok. So, this so there is an Ag site that is empty

ok. This is another vacancy in the Ag side and again you can do the same analysis ok. I

will not go into this detail ok, but again you will get that number of defects divided by

total number of sites is proportional to e to the minus delta H by 2 RT ok.

So, there is a factor of two that appears with the delta H and the constant is this entropy

with  the  constant  of  proportionality  is  this  entropy  factor  ok.  So,  with  this,  I  will

conclude  this  lecture  and  you  can  actually  use  thermodynamics  very  effectively  to

calculate the fraction of defects and we will see this in some exercise exercises. 

So, in the last lecture I will summarize what we learnt in the 7th week and do some

practice problems.

Thank you.


