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So this will be the last lecture of module 5. And in this lecture I will first of module 8.

And in this lecture I will first a recap what we have done in module 8. And then and then

we will discuss some practice problems. So, let us see what all we learnt in this module

in this module this module. We basically learnt about Fourier series and about orthogonal

Eigen function expansion. 

So, in the first lecture, we discussed Fourier series and Fourier expansions. We saw how

we can write a function in terms of it is Fourier series, we saw what a Fourier series.

Then we looked more at Fourier expansions we looked at various functions and what

their  Fourier  expansions  look  like.  And  then  we  also  saw how to  solve  differential

equations using Fourier expansions. This part I should emphasize is something that is

very useful; we would not be doing practice problems on this, because this is especially

useful in numerical solutions of differential equations. Then in the next lecture we saw

orthogonal Eigen functions and the Sturm Liouville theory. So, they were only 3 lectures



because some of these lectures were little longer. So, we saw the Sturm Liouville theory

and how to analyze in terms of orthogonal Eigen functions.

So, today I will do some practice problems. Now this material is there is explained wave

very nicely and Macquarie in chapter 14 and 15. And kreyzig has a lot of has some

discussion on these things in part of Sturm Liouville theory is there in chapter 4. And

then Fourier series is discussed in chapter 10 where actually partial differential equations

are discussed. But again I should emphasize that these books have a lot more than what

we are doing, but nevertheless they are useful references. 

So now, so now, let us go and start working out a few practice problems. So, the first

problem this is a quantum mechanical free particle problem. 
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And this gives the idea of plane waves. But the problem is considered a free particle in

1D the Schrödinger equation the time dependent time independent Schrödinger equation

for this particle is given by this. Minus h cross square by 2 m d square by dx square psi x

equal to e psi of x. Solve for psi of x for different values of e such that e is greater than 0.

Then the next part is to consider periodic boundary condition psi 0 equal to psi l. Psi

prime of 0 equal to psi prime of l. And you write this as a periodic sturm devil problem.

Calculate Eigen values and Eigen functions I mean verify orthoganality, let us solve this.



So, the first part is to is to do the free particle. So, the free particle part. So, this is the

free particle.  So, the free particle part I can, I can just write this out this is a simple

second order differential equation. So, I can write I can write d square psi by dx square is

equal to minus 2 m E by h cross square psi. So, I can write as psi of x as constant I will

just write A e to the i and you have square root of 2 m E by h cross square times x. And I

will I will use a notation I will write this as and it can be it can be either plus or minus,

both the solutions are valid. So, it can be plus or minus.

Now, I will I will write this as I will write this as A e to the plus minus i k x. Where k is

equal to square root of 2 m E by h cross square e is greater than 0. So, this is the square

root of that. 
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So now, This is a solution for e greater than 0. So, the general, general solution psi of x is

equal to A e to the i k x, plus B e to the minus i k x. So, e to the kx e to the i k x and e to

the minus i k x are linearly independent functions. So, you can write the general solution

as a linear combination of these. Alternatively or you can write phi of x as a sin kx plus b

cos kx. So, if you do not want to deal with sins and cosines you can also write in. If you

do not want to deal with imaginary functions you can also write in this form. You can

easily verify that sin and cosine will also satisfy this equation.

So, that is the that is the first part where you solve for different values of e such that e is

greater than 0. Now I consider the periodic boundary conditions. So, psi of 0 equal to psi



of l and psi prime of 0 equal to psi prime of l. So now, if I take this differential equation.

So, let me take this h cross square by 2 m to the right. So, I will write equal to 0. So, I

can or I can write this as x square let me let me just write this as 1D psi by dx the whole

thing prime. Or you know just to keep the notation short I will just write psi prime plus 0

plus 2 m E by h cross square psi equal to 0. I wrote it in this form you can immediately

see that p of x is equal to 1 which is greater than equal to 0 q of x equal to 0 which is

again greater than or equal to 0, r of x equal to 1 lambda is equal to 2 m E by h cross

square.

So, and So, this now we also notice that that since psi of 0 equal to psi of l, this is by

demand we have demanded this. And psi of prime of 0 equal to psi prime of l. Now we

notice that p of 0 equal to p of l equal to 1. So, this is a periodic, So actually just by just

by this equation we can, we can, we can, we can look for solutions that satisfy this. So,

this is a periodic Sturm Liouville problem. This is a Sturm Liouville equation and this is

a this these boundary conditions imply that it is a periodic Sturm Liouville problem. So,

what that means, is that you can have solutions ok.

So those the lambda equal to 2 m E by h cross square is real. 
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So, you can have various solutions, you can have various solutions. So, you can have

solution psi lambda of x corresponding to eigenvalue lambda. And basically each you

can have you can have different values of e and each of those will be orthogonal. You



need you need your psi lambda of x to satisfy the boundary conditions. Now we saw that

we saw that in general, we have we you can write psi of x in this form kx. So now, psi of

So psi 0 equal to psi l implies A plus B is equal to A e raise to I kl plus B e raise to minus

i k l. And psi prime of 0 equal to psi prime of l implies i k times A minus B is equal to i k

times A e raise to i k l, minus B e raise to minus i k l. 

So, these are the 2 conditions that should be satisfied. And So, if I just if I just cancel this

I will get A minus B is equal to A e raise to I kl minus B e raise to minus i k l. And if I

add these 2 what I will get is that. So, I will get 2 a is equal to 2 A e raise to I kl this

implies e raised to i k l is equal to 1, implies k is equal to 2 n pi by l.

So, the solutions So now, So now, instead of k. So, use n instead of k and you can writes

psi n of x is equal to A e raised to I 2 pi by l n x. And your orthogonal or orthoganality

relation implies integral 0 to l psi n of x psi m of x dx equal to 0 if n is not equal to n m,

this can be easily verified. This is easily verified this is nothing but a Fourier series ok.

So, this is nothing but a Fourier series, because these are these suggest the coefficients in

a Fourier expansion. And So and So, you can easily verify these now these functions are

referred to as plane waves. Now if I take different values of n then I will get different

functions now all these functions are periodic in the interval 0 to l. So, if I plot them 0

and l these will be periodic functions. So, whatever the value is at 0 you will have the

same value. So, you might have you will have, you will have both the real and imaginary

parts of this function be periodic.

So, for example, if you look at the real part real part is cosine. So, what it will look like

is it is a it is a cosine with this period. So, it will look it look like this. This is for n equal

to 1, n equal to 2 n equal to 2, it will look it will look again like a cosine. So, this is a real

part out of psi, n equal to 2 it will again look like a cosine, but it look it will have a

different period. So, it will have this is n equal to 2.

So, n equal to 1 looks like this n equal to let me show in blue n equal to 2. So, if n equal

to 2 then it will look n equal to 2 and So on. And you can easily verify that each of these

are orthogonal. So, these are plane waves that with this periodicity of l. This is a very

useful way of writing solutions for wave functions of solids. So, for periodic solids or

periodic systems and solid wave the wave function in a solid is expressed as a linear

combination of plane waves. And we show the one dimensional plane wave by taking



product of plane waves as in different directions we can construct 3 dimensional plane

wave. So, we can multiply a plane wave in x by a plane wave in y, by a plane wave in z

and you know these are 3 independent directions, So you can get these 3 dimensional

plane waves ok.
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Now, the next problem this is,  this is another very practical application of orthogonal

Eigen functions. So, this is in deriving spectroscopic selection rules from orthoganality

of Eigen functions and recursion relations. So, the dipole selection rule is one of the most

commonly used selection rule in spectroscopy. So, this is based on the transition dipole

moment integral. So, there this integral is a you take a wave function multiplied by x and

you and you and you multiplied by another wave function. Where x is basically some I

mean, you can you can think of x as a some coordinate it might be a spatial coordinate it

might also be an angular coordinate.

For  vibrational  spectroscopy psi  v  of  x  the  wave function  is  indexed by a  quantum

number v. So, v is the vibrational quantum number, quantum number and equal to 0 1 2

and so on. And this function is given by H v, this is the Hermite polynomial. So, it is a

hermite polynomial multiplied by this exponential function, by this Gaussian function e

to the minus x square by 2 this is called a Gaussian function ok.

So, H v of x is  the hermite  polynomial  the Hermite  polynomial  satisfies a recursion

relation. Now the recursion relation says that h of n plus 1 corresponding to n plus 1



hermite polynomial. Minus 2 x into h n the n hermite polynomial plus 2 n into h n minus

1. So, the n plus 1 n 10 n minus 1 hermite  polynomial are related by this recursion

relation. And what we are to do is to use this to derive the selection rule for vibrational

spectroscopy. Now to solve this is not very difficult you just take this integral. So, let us

write this integral. So, the transition dipole moment.
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So, integral psi n psi v of x, x psi v prime of x dx from minus infinity to plus infinity.

This  is  a  range of  range of  x  for  a  for  a  hermite  polynomial,  or  for  the  vibrational

quantum number. This is equal to integral ok.

Now, I can write this as H v of x e to the minus x square by 2 times x times H v prime of

x e to the minus x square by 2 dx, from minus infinity to plus infinity. Now I cannot use

any orthogonality  relation because I  have an x here.  So,  let  me write  this  out in the

following form I should I should mention that they should be a complex conjugate here.

Now these are real function. So, the complex conjugate is nothing but the function itself.

So, let us just go ahead and write this out. So, this is equal to integral minus infinity to

plus infinity. Now what we have is H v of x, x H v prime of x e to the minus x square dx.

Now what will do is we will take this x we will take x times v H v prime of x. We will

use the recursion relation in the following form. So, if you rewrite this what you will

what you can show is that this is equal to half integral minus infinity to plus infinity H v

of x. Now I take the x h n on the right. So, I will get H v plus 1 of x plus 2 v or v prime



plus 1 2 v prime H v prime minus 1 of x, and then I have e to the minus x square dx. So,

I took the half factor down.

So, what you get is that you will get 2 terms. So, the first term is half integral minus

infinity to plus infinity, H v of x H v prime plus 1 of x e to the minus x square dx plus

integral, I have a v prime I will just take the v prime outside it is independent of x, and

what I have is H v of x H v prime minus 1 of x e to the minus x square dx. So, you have

these 2 terms.

Now, now using the orthoganality of hermite polynomials. So, this is equal to 0 unless v

equal to v prime plus 1. So, the first term goes to 0 unless v equal to v prime plus 1,

second term goes to 0 unless v equal to v prime minus 1. This equal to 0 unless v equal

to v prime plus 1 or v equal to v prime minus 1. So, the selection rules. So, I can write v

minus v prime is equal to plus minus 1, this is the selection rule ok.

So, this is this the selection rule for vibrational spectroscopy. So, under the harmonic

oscillator  approximation,  your  vibrational  spectroscopy  you  we you  will  not  have  a

vibrational spectrum. So, this transition dipole moment integral. So, this will be equal to

0 unless you have this condition. So, if you do not have this condition you would not

have any spectrum. So, if this transmission dipole moment goes to 0 then there is no

spectrum. So, the condition for having a spectrum is that your v minus v prime should be

plus minus 1 or the difference between difference between these 2 states n and m should

be should be that there their vibrational quantum number should be either should they

should differ by one. So, this is a very practical use of or very commonly used a very

common application of these orthogonal Eigen functions ok.

So, next problem is the Legendre equation and rotational spectroscopy. So, with So, we

will So, we will do it in various steps this problem. So, the first step is to is to write the

Legendre differential equation which is given by 1 minus x square y double prime minus

2 xy prime plus n, n plus 1 y equal to 0 as a Sturm Liouville problem.
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The second part has to do with the quantum mechanical rigid rotor wave function, and

this is given by spherical harmonics. So, spherical harmonics. So, there are 2 quantum

numbers l and m ok.

So, Y l m of theta and phi theta and phi are the angular coordinates. This is given by this

is called an associated Legendre polynomial P l m of cos theta absolute value of m of cos

theta is an associated Legendre polynomial; it is a function of cos theta and this satisfies

so if the variable was x then this P l m would satisfy this equation. So, it looks like a

Legendre differential equation 1 minus x squared p double prime of x minus 2 x p prime

of x. So, which is which is exactly the same as these 2 terms. And then plus l, l plus 1

which is again very similar to the Legendre equation, but you have an additional term, m

square over 1 minus x square px. So, it  is it  only slightly differs from the Legendre

differential  equation  and  therefore,  this  solution  is  called  the  associated  Legendre

polynomial.

Now, what I am asked to do is, what I am asking you to do is for fixed m right as a right

as  a  Sturm  Liouville  problem  and  derive  the  orthoganality  relation,  which  is  fairly

straightforward. And then the last part is to use the recursion relation. So, the associated

Legendre polynomials they satisfy this recursion relation. So, 2 l plus 1 x into P l m of x

minus l minus absolute value of m plus 1 times pl plus 1 l plus 1. So, instead of l I had l

plus 1 I always have m everywhere. And I have and in the last term I have l minus 1. And



you use this to derive the spectroscopic selection rule for rotational spectroscopy. Now

you can see that the last part will be exactly the same as the as we did for the vibrational

spectroscopy. 

So, let us first write the Legendre differential equation as a Sturm Liouville problem. So,

to do this, so if I take 1 minus x square y prime the whole prime, this is equal to 1 minus

x square y double prime minus 2 x y prime. 
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So, I can write the Legendre differential equation as 1 minus x square y prime the whole

prime plus 0 plus n, n plus 1 times 1 times y equal to 0. So, this is a Sturm Liouville

problem p of x is equal to 1 minus x square q of x equal to 0 r of x equal to 1 lambda

equal to n, n plus 1.

Now, we see that p of x is greater than equal to 0 if x is less if x square is less than equal

to 1 or minus 1 less than x less than equal to x less than equal to 1. And we also notice

that p of 1 equal to p of minus 1 equal to 0. So, therefore, I can write this as So, this is a

this  So,  no  need  for  boundary  condition  at  1  and  minus  1  and  I  can  write  the

orthoganality relation as minus 1 to 1. Now the solutions for a given value of n are

denoted as pn of x pm of x dx equal to 0 if n is not equal to m ok.

So,  this  is  how you can  write  the  Legendre  equation  as  a  Sturm Liouville  problem.

Notice that I am using n instead of lambda, but that does not matter, you know that n, n



plus 1 is nothing but lambda. So, lambda is n, n plus 1 and p of x is 1 minus x square.

Your weight function r of x is equal to 1. So, I do not need to have any weight function

here. So this shows how you can write various equations as Sturm Liouville problems

ok.

Now, let us look at the next part. Next part is to take this equation for the associated

Legendre  polynomial.  So,  for  the  associated  Legendre  polynomial,  now I  can  do  a

exactly the same thing as I did before. So, I can write 1 minus x square y prime the

whole thing prime plus my q, q in this case is m I can write as minus m square over 1

minus x square and plus l, l plus 1 y equal to 0 ok.

So now, remember the Sturm Liouville problem conditions. So, if you go back to the if

you go back to the previous lecture so, the Sturm Liouville  problem conditions.  The

Sturm Liouville problem condition it there is the condition is that p should be greater

than or equal to 0 r of x should be greater than or equal to 0. There is no condition on q, q

can be anything. So, in this case q is actually negative.

So, so what we identify is that p of x equal to 1 minus x square.
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Q of x equal to minus m square over 1 minus x square, r of x is equal to 1 lambda equal

to l, l plus 1. And we can immediately write the solutions. So, again we have p of 0 p of 1

equal to p of minus 1 equal to 0. So, we can write the orthoganality condition as before P



l m of x p l prime m of x dx equal to 0. This is for a given value of l, for a given value of

m for fixed m. So, that is the that is the orthoganality relation and this completes the

second part.

Now, the last part is to use a recursion relation for p to derive spectroscopic rules for

rotational spectroscopy. Now in this case you are transition dipole moment So, that will

look like y phi. And then now actually the there is a term that looks like cos theta and I

have y l prime m prime of theta phi integral and the and the and the integral is over sin

theta d theta d phi. So, this is what this integral looks like and there are 2 limit is are

from d theta goes from 0 to pi d pi goes from 0 to 2 pi.

So, this sin theta d theta d phi is the Jacobean for in this for converting to spherical polar

coordinates. So, we are converting to these angles theta and phi. So, this is the this is

what your transition dipole moment looks like, now you can clearly see that if I write if I

expand for Y l m of theta phi. If I write this Y l m of theta phi in terms of in terms of a

theta part that is P l m cos theta and e to the im phi. Then what I can see is that the phi

integral 0 to 2 pi the phi integral the integral over phi will just have e to the i m phi e to

the and I should put a complex conjugate here. E to the minus i m phi times e to the plus

i m prime phi.

So, the minus came because you took a complex conjugate d phi. And then I have a theta

integral that looks like integral 0 to pi, and what I have is P l m cos theta times cos theta l

prime m prime cos theta sin theta d theta. What you can see from the first integral is that

is that this looks like integral. 
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0 to 2 pi e to the i m minus m prime phi d phi and this equal to 0 unless m equal to m

prime.

So, if m is not equal to m prime, then you can easily show that this goes to 0. So, that is

the first one. So, the So, the first integral is just this so. So therefore, what we will what

we will say that m equal to m prime is one condition or selection rule. Now the second

condition we can get by putting m equal to m prime in this, what you will get is and then

and then you will put x equal to cos theta dx equal to minus sin theta d theta x so what I

will get is. So, this second integral So, integral over theta becomes integral, now aqh

when theta equal to 0 x equal to 1 theta equal to pi x equal to minus 1. Now I have pl m

of x times cos theta is x and I have pl prime m prime of x. Now sin theta d theta is minus

d x minus d x. So, what I can do is I can just change the limit is and I can write this as P l

m of x x p l prime m of x dx from minus 1 to 1.

Now, we already saw So now, now let us use the recursion relation, using this recursion

relation.  So, the recursion relation says that 2 l plus 1 times x pl,  is  given by some

quantity l minus m r and sun p l plus 1 and some constant times p l minus 1. We can

replace this by 2 terms one that involves p l prime plus 1 and another that involves p l

prime minus 1 of m. And use orthoganality just like hermite polynomials l equal to l

prime plus 1 or l equal to l prime minus 1 So, for non 0 integral. So, unless l equal to l

prime plus 1 or l equal to l prime minus 1 your integral will be non 0.



So, the final selection rules for rotation for rotational spectroscopy m equal to m prime l

equal to l prime plus minus 1. So, what I have shown you through these problems this is

again you know very, very useful selection rule for rotational spectroscopy. So, we can

see the applications of this orthogonal Eigen functions in actually deriving selection rules

for spectroscopy. So, I will conclude this module on ah module 8 with this and next week

we will start module 9.

Thank you.


