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So, now this will be the third lecture of this module, and because the last lecture was a

little long. So, this will be; we will have only 4 lectures in this module. So, the third

lecture  we will  have  the third  lecture  now and then the  fourth lecture  will  be some

practice problems.

So,  in  this  lecture  I  want  to  generalize  the idea  of  the Fourier  series  and talk  about

orthogonal Eigen functions. So, in the Fourier series we used sins and cosines and we

expanded functions in terms of sins and cosines, but it turns out that you can expand in

terms of any orthogonal Eigen function. The Fourier series is a very useful series, but

there  are  also  other  series  that  are  useful  in  some  cases.  So,  I  want  to  talk  about

orthogonal Eigen functions and then I want to talk about the general theory of orthogonal

Eigen functions, which is referred to as a Sturm Liouville theory.
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So, to motivate this lets first talk about Legendre polynomials and these are we denoted

them as P n of x and these are polynomials and these satisfy the Legendre differential



equation  which  we  wrote  as.  So,  this  is  the  Legendre  differential  equation  whose

solutions  are  these  polynomials.  So,  for  different  value  of  n  you  get  you  get  these

solutions. Importantly see each value of n of an corresponds to a differential equation

and basically when you change your n you get a new differential equation. But the nice

thing is that the solutions of all these differential equations they look very similar and

they can be express in terms of these Legendre polynomials, and we will just I will just

write the expression. So, I mean this is derived in books we are not going to bother with

this too much, but I will just say that the Legendre polynomials they have this form by 2

and you have some big expression.

I do not expressed x expect you to remember this expression, but you should know that it

is actually possible to write such expressions. So, there are a bunch of factorial this 2 n.

So, j goes from 0 to n by 2. So, n minus 2 j will always be greater than or equal to 0

similarly n minus j and 2 n minus 2 j will also be greater than or equal to 0 and then you

have x raise to n minus 2 j. So, in this term there are n by 2 terms. So, if n is odd then

you will have x raise to all the odd powers if you if n is even you will have only even

powers.

So, you will have a polynomial that contains either odd terms or even terms. Now what

is interesting about this Legendre polynomials is a very very interesting fact about these

Legendre  polynomials  is  they  orthogonality,  and what  this  orthogonality  says  is  that

integral P n of x P m of x dx from minus 1 to 1 equal to 0, if m is not equal to n very very

interesting relation. So, if I take 2 polynomials and I take the product and I integrated

from minus 1 to 1 then you get 0. And if n is equal to m this is just 2 over 2 n plus one

equal to n. Now there are a few things to note first is this limits. So, limits are from

minus 1 to 1, second thing is that you just took a product of the polynomials and you did

this and you and you said it is equal to 0. Now what is interesting is that we just took the

product we did not multiply by any factor. Now we go back to our ideas of vector space

and what we say is that this looks like a dot product, it is the generalization of a dot

product.

So, what we are seeing here this whole thing is like a generalization of a dot product.
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So, we use a terminology that P n of x and P n of x are orthogonal in other words the

inner product if you if I imagine these as vectors then this if I imagine them as vectors

this inner product is defined as minus 1 to 1 P n of x P m of x dx. So, this is inner

product. So, basically you can think that in this space of functions in vector space of

functions. So, in this space of functions these are vectors these are like vectors that are

orthogonal. So, this is like a dot product. Now what you can do is you can write any. So,

since these are orthogonal vectors the set of vectors or in you can use polynomials P 0 of

x P 1 of x P 2 of x constitutes a basis set for functions of x. So, for all functions f of x

you can use this as a basis and you can write you can do a basis function expansion.

So, you can write f of x is equal to sum over n equal to 0 to infinity, an P n of x this is

expanding f of x in P n of x. This is you can call this an orthogonal Eigen function

expansion. So, this is like an Eigen function again, this idea we already saw this when we

were doing the Fourier series in the Fourier series we took a very particular form of this

P n means would a we took sins and cosines, but this is sort of a generalization of that

now what is an given by. So, I can use the orthogonality relation to say that if I take f as a

vector and or let me write an, then I take the inner product with P m. So, if I just take this

inner product, now this will be equal to. Now what will happen is that I will have I will

have some over n equal to 0 to infinity, an and I have P n P m.



But using the orthogonality I will see that this term is equal to 0 if n is not equal to m.

So, all the terms in the sum where n is not equal to 0 will be 0. So, the only term that will

be non-zero is when n equal to m and when n equal to m, P m P m will be 2 over 2 m

plus 1. So, what we will get is am that will be the term where n equal to m times 2 over 2

m plus 1. So, therefore, I can write am as 2 m plus 1 over 2 and I can write I will just

write out this f of x P m of x dx from minus 1 to 1. So, this is what these are this is how

you calculate the coefficients of this expansion. So, now, this is very powerful method

and we showed this  for the Legendre polynomials,  now there are now the Legendre

polynomials are solutions of the Legendre differential equation there are solutions of this

differential equation.

Now, you could have other polynomials that satisfy other differential equations, and they

could  also  be  orthogonal.  For  example,  you  could  have  let  us  say  the  Hermite

polynomials.
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So,  incidentally  the  Legendre  polynomials  appear  in  the  rotational  states  rotational

degrees of freedom of a particle, the Hermite polynomial appear of a molecule Hermite

polynomial is used to describe the vibrational degrees of freedom of a molecule. So, that

is  a  harmonic  oscillator.  So,  they  appear  in  the  solutions  of  the  quantum harmonic

oscillator, where as Legendre polynomials appear in the solution of the quantum rigid

rotor. So, the Hermite polynomials now these satisfy the differential equation y double



prime minus 2 xy prime plus 2 ny equal to 0. So, they satisfy this differential equation

and these are written as Hn of x is a solution of this differential equation. You have a H 0

of x equal to 1, H1 of x equal to 2 x, H 2 of x equal to 4 x square minus 2, H 3 of x equal

to 8 x cube minus 12 x and so on.

So, what is important is that the even terms even polynomials they contain even terms

and  odd  polynomials  contain  odd  terms,  that  are  odd  powers  of  x.  So,  therefore,

therefore, you can say that Hn of minus x is equal to minus 1 raise to n Hn of x. So, these

Hermite polynomials are odd if n is odd, then you then Hn of minus x is minus Hn of x.

So, they are odd functions if they are even they if n is even then it is an even function.

So, now, these Hermite polynomials they satisfy an orthogonality. So, their orthogonality

is slightly different, this is slightly different this satisfies this is written as integral minus

infinity to plus infinity, Hn of x of x, e to the minus x square dx equal to 0 if n is not

equal to m, and equal to root pi into 2 raised to n n factorial if n equal to n.

So, now in this case you notice that the limits go from minus infinity to infinity, and

there is this function here this is referred to as a weight function. So, we say that Hermite

polynomials  are  orthogonal  with  respect  to  this  weight  function.  So,  Hermite

polynomials are orthogonal with respect to weight function e to the minus x square. So,

these are the 2 these are this is another kind of orthogonality that takes that is there now

the; we can generalize this.
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So, the general description of orthogonal functions is called as Sturm Liouville theory.

So, this is the theory that will help you understand what should be the limits, what should

be the weight function and so on. So, here what is done is you write at second order ODE

in the following form you write it as P y prime the whole prime plus q plus lambda r y

equal to 0.

So, P is a function of x, and q is a function of x, r is a function of x lambda is a scalar,

lambda is  a  real,  lambda is  a  scalar  are  continuous  in  some interval  you take  some

interval ab. So, a b is some interval in x. So, and what else some other conditions we will

demand that P of x is greater than or equal to 0 in a b, and r of x is greater than equal to 0

in ab. So, this is a differential equation. So, it takes this differential equation I will call it

equation 1. Now I wrote it this way I mean basically this is a general second order linear

differential  equation.  Second  order  linear  homogeneous  differential  equation  can  be

written in this form and now the. So, suppose you have this differential equation and you

have and you have the boundary conditions. So, the boundary conditions at a. So, a and b

are this a and b are the is a range of x is the allowed values of x.

So, the boundary condition I will write as alpha 1 y of a, plus alpha 2 y prime of a equal

to 0. So, this is the boundary condition at a, and you have beta one y of b plus beta 2 y

prime of b equal to 0. So, these 2 are the boundary conditions boundary condition at a

and b. So, a and b are the boundaries and we want at least one of alpha beta not e not

equal to 0. So, one of these for alpha one alpha 2 beta 1 beta 2 one of those should not be

equal to 0, and we will assume that alpha is alphas and betas and real. So, lambda is

referred to as an Eigen value and lambda should be a scalar it,  it  can be a real or a

complex number. Now this is called a Sturm Liouville problem. So, suppose you have

this differential equation with this boundary conditions, this constitutes what is called a

Sturm Liouville  problem.  We will  we will  refer  to  it  as  a  SLP the  Sturm Liouville

Problem.

So, this is what constitutes a problem a Sturm Liouville Problem and you find that you

know you can write a whole lot of differential equations in this form. So, this is not a not

a very restrictive form, you can easily see that you can write your Legendre differential

equation, your Bessel equation your etcetera in this form. Now suppose if so, there are

there are various special cases.
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If P of a not equal to 0 and P of b not equal to 0. So, we said that P of x has to be greater

than or equal to 0. So, it cannot be negative, but it can be 0, but in case P of a and P of b

are not equal to 0 and then this is called a regular straw a Sturm Liouville problem. If P

of a equal to 0 then boundary condition at a is not needed.

So, we do not need this boundary condition we know we do not need the first the top

boundary condition at a. If P of b equal to 0 then boundary condition at b is not required

not needed. So, if these 2 are referred to as singular Sturm Liouville problems and the

third case if P of a is equal to P of b then we can demand y of a equal to y of b, and y

prime of a equal to y prime of b and with this we considered something called a periodic

Sturm Liouville problem. So, we can look for solutions that satisfy this. So, there exist

these solutions and this constitutes a periodic Sturm Liouville problem. So, these are the

various  types  of  Sturm Liouville  problems and for  and for  each of  these  the  Sturm

Liouville theory says that that there exists.

So, according to Sturm Liouville theorem first is that there exist solutions yn of x for

Eigen values lambda n. So; that means, you have a you have Eigen values like lambda 1

lambda 2 lambda 3 and you have solutions of y 1 of x, y 2 of x, y 3 of x etcetera. So,

there exist these solutions second thing is lambda one lambda 2 etcetera are real, and the

third is that corresponding to these lambdas.  So, ys are orthogonal.  So, solutions are

orthogonal with respect to weight r of x that is integral yn of x ym of x from a to b this is



a limit r of x and dx equal to 0 if n is not equal to m. So, this is a very powerful theorem

and notice that just by looking at the differential equation.

So,  just  by  looking at  the  differential  equation  and the  boundary  conditions  we can

immediately imply that the solutions the solutions, now notice if you change the value of

lambda,  you  will  get  a  different  differential  equation.  So,  and  this  is  exactly  what

happened in the Legendre polynomials or the Hermite polynomials. For example, in the

Legendre polynomials your lambda will look like n n plus 1. So, you have this is what

your lambda looks like. So, just by having a differential equation in this form and having

suitable  boundary conditions  you can get  orthogonal  Eigen functions.  So,  obviously,

obviously we said that if P a equal to 0 then boundary condition at a is not needed if P b

equal to 0 boundary condition is it b is not needed, and if both are 0 then boundary then

you do not need any boundary conditions and you can just write this orthogonality. Now

once you have this orthogonality then you can expand your functions in terms of these

orthogonal functions. So, I will conclude this lecture here and what I want to emphasize

in this is that there is a very general theory of orthogonal function expansion.

And this is called the Sturm Liouville theory, and this theorem is extremely powerful

because you can just look at differential equations and you can identify that the solutions

should be orthogonal Eigen functions, and once you have orthogonal Eigen functions

you can take any function and expand in those. The place in chemistry where you see

this  see  this  really  in  action  is  quantum mechanics.  In  fact,  the  whole  of  quantum

mechanics;  the very postulate  of quantum mechanics  is related to a kind of operator

called a Hermitian operator, this operator has real Eigen functions and it has Eigen value

it has real Eigen values.

And it has orthogonal Eigen functions and in fact the important thing about quantum

mechanics is that you can almost write you I mean the most common equation that you

see  is  a  Schrodinger  equation  or  the  Eigen  value  equation  for  the  energy  for  the

Hamiltonian operator, which is actually a second order differential equation and you can

show that its Eigen functions should be orthogonal and its Eigen values should be real.

So, the energy is the Eigen value which has to be real. In fact, the whole of quantum

mechanics  is  founded  on  this  Sturm Liouville  theorem,  it  is  an  extension  of  Sturm

Liouville theorem to complex functions and. So, I will conclude here now in the in the

practice problems I will try to show you how to write the various classic problems as



Sturm Liouville problems and how to use the orthogonality to do various simple integrals

in quantum mechanics.

Thank you.


