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Phase Plane of a Pendulum, Linear Stability Analysis

In this  lecture I  will  talk about we look at  the phase plane,  but for us slightly more

complicated problem and in this case we look at a problem where we do not actually

solve the problem. So, in the previous case we saw that we could actually  solve the

problem and we could write and that was because the problem was linear problem, it was

a linear ode the either the harmonic oscillator or the damped harmonic oscillator both are

linear equations.

Now let us consider a non-linear equation and show how we can analyze the non-linear

differential equation. So, the equation that I will be considering is that of a pendulum of

arbitrary amplitude.
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So, the differential equation has this form theta double dot. So, theta is the angle that the

pendulum makes. So, if you have a pendulum and this is the vertical. So, the pendulum is



oscillating and as it oscillates; it makes an angle theta; so, theta double dot plus omega

square sin theta equal to 0.

So, clearly he is a sin theta. So, it is not just theta. So, for small amplitude it becomes

linear,  but  for  arbitrary  amplitude  this  is  non-linear,  sin  theta  has  theta,  theta  cube

etcetera. So, sin theta remember sin theta remember the Taylor series for sin theta sin

theta equal to theta minus theta cube by 3 factorial plus theta 5 by 5 factorial plus all

these are non-linear terms.

So, this is a non-linear second order ode let us write this in the usual phase plane picture.

So, we will say theta dot equal to omega, and omega dot which is theta double dot is

equal to minus omega square. This omega is in these this is capital omega this is small

omega, square sin theta. Now let us look at the critical  points. So, theta dot equal to

omega dot equal to 0 implies omega equal to 0, and omega square sin theta equal to 0.

So, now, omega square sin theta equal to 0 implies sin theta equal to 0 or theta equal to

plus minus n pi or I will just write it as n pi, where n equal to 0 plus minus 1 plus minus

2 3 and so on. So, these are the critical points. So, critical points omega equal to 0 and

theta equal to plus minus n pi. So, it can be 0 plus pi, plus 2 pi, plus 3 pi minus 2 pi

minus 3 pi and so on
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Now theta equal to 0 omega equal to 0 this is your critical point. So, this is one critical

point. So, when theta becomes 0 then you can clearly see omega is 0, omega dot is 0

everything is 0, one kind of critical  point and we will  see soon that this  point has a

certain feature whereas, the other ones will have certain other features. Let us take this

point sin theta for theta close to theta equal to 0. So, close to the critical point I can write

sin theta as sin theta approximately equal to theta. I get omega dot equal to minus omega

square theta.

And this is basically a simple harmonic oscillator and it is a simple harmonic oscillator.

So, now, if I look at this omega theta plane the phase plane, and I will deliberately show

it a little long and the theta axis. So, theta equal to 0 is one critical point, and around this

critical point your trajectories look like they ellipses. This is what the trajectories look

like about this point; this is theta equal to 0, then you have another point where let us say

theta equal to pi, this is another critical point let us look at what the trajectories look like

around theta equal to pi.

So, in this case your trajectories look like periodic solutions, this is a center theta equal

to omega equal to 0 is the center and around this critical point the trajectories look like

ellipses. What about theta equal to pi? So, now, in this case we will also look at 2 pi just

to just for completeness; what happens is that we have to look at what the solutions look

like when you make small displacements around theta equal to pi, theta equal to pi if you

look at your pendulum that is this; theta equal to 0. So, this is theta equal to 0 and theta

equal to pi is the pendulum pointing straight up.

So,  clearly  if  you  make  a  small  displacement  around  this,  if  you  make  any  small

displacement you will you can easily show that it will keep going away and away. If you

make a small displacement around this the solution is oscillatory, if you make a small

displacement around this the solution is not oscillatory, it is it will completely go away

from that. So, clearly theta equal to pi, 3 pi, minus pi, minus 3 pi. So, pi is same as 3 pi

same as 5 pi etcetera.

So, are unstable critical points whereas, theta equal to 0, 2 pi minus 2 pi, 4 pi, minus 4pi

etcetera are stable critical points.
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So, now, let us look near unstable critical point pi theta equal to pi omega equal to 0. So,

when theta is close to pi we define theta equal to, theta are theta 1 equal to theta minus

pi. So, then I will just. So, see theta 1 is a difference of theta from pi, and now I can write

my equations as d theta 1 by dt or theta 1 dot equal to omega C; theta 1 dot is same as

theta dot which is show omega omega.

But what I will get is that omega dot now omega dot was basically given as was given by

minus omega square sin theta this is. So, close to this. So, this is approximately equal to

minus omega square, it is equal to sin of pi plus theta 1 which is close to for small theta

1, so, this goes as plus omega square theta 1; so, for small for small theta 1. So, theta 1 is

the difference of theta from pi and is since this is small, I can do this sort of expression

and now I can write my now I have a linear equation.
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So, I have theta 1 dot omega 1 dot is equal to 0 1 omega square 0, theta 1 omega 1. So,

this procedure is called linearizing this equation. So, what we did is we linearized non-

linear ODE near critical point. So, near the critical point we linearized and we wrote it in

this form; this is the very important step. So, this step linearization or of a non-linear ode

near the critical point is a very crucial step in analyzing of non-linear odes.

So, what we did was first we found critical points. So, we had a non-linear ode. So, first

we found the critical points and then we linearize the ode. So, we identified the stable

critical point. So, we know what the solution looks near the stable critical point. Now we

are going to linearize allow around the unstable critical point, and we know what the

solution looks like. Now this you can easily write the solution theta 1 omega 1 this is a

linear ode only thing now it is plus omega square.

So, this will have exponential solutions. So, it look like C 1 plus C 2 1 minus omega, e to

the minus omega t. You can do the analysis of this around this critical point what you

will find if you analyze the trajectories, what you will find is that you have lines of slope

omega and minus omega. So, you have 2 lines; so, one of slope omega and 1 a slope

minus omega.
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So, let me show it in this figure. So, you have a line of slope omega and a line of slope

minus omega.

So, these 2 lines are there, now the trajectories will what will they do. So, in this case

suppose you start  some value of theta  and some value of omega.  So, theta  1 is  this

difference from here. So, what you notice is that you have these 2 lines where whether

are basically asymptote. For example, if both C 1 and C 2 are not equal to 0, then you

will  be  starting  somewhere  let  us  say  you start  here.  Then what  will  happen to  the

trajectory is that as time increases in this case what you will see is that as time increases

this trajectory will go I will cross 0, and then it will go in the other direction and it will

keep it will keep going away. So, theta 1 will keep increasing in the. So, in this case theta

1 is negative.

So, we started with a negative theta 1 and if theta 1 is negative then omega 1 will keep

decreasing. So, it will go in this direction. So, omega is decreasing. So, omega omega

keeps decreasing, theta 1 is negative now as omega keeps decreasing theta becomes less

negative. So, it follows. So, theta becomes less negative it goes closer to pi, when omega

goes to 0 then your theta 1 dot becomes 0. So, theta 1; so, the slope of theta 1 goes to 0.

So, in other sense that when you are omega goes to 0, essentially what you are what you

are having is your theta 1 just crossing this your theta 1 is essentially constant. Your theta

is not changing right at this point where omega goes to 0.



So, the line becomes parallel to the omega axis and then and then it goes away. Now

what is also important I did not show this correctly here. So, this will asymptotically

approach these graphs. So, this graph will asymptotically approach these lines maybe I

will show these lines in a different color. So, let me show them in a slightly different

color  just  to  make  it  clear.  So,  you  have  this  line,  you  have  this  line,  and  it  will

asymptotically approach this. Now if you started with a point somewhere here then what

would happen;  well  let  us do the easier part  let  us do this  first.  So,  if  we start  with

somewhere here you will go like this.

So,  and in  this  case you we will  have it  moving in  the  other  direction.  If  you start

somewhere here then what will happen is that in this case your omega will never go to 0.

So, what we started was in important this case your theta 1 will go to 0. So, you will get

something like this. So, this is a line where theta 1 equal to 0. So, it will cross this and it

will go like this and again it will asymptotically go to these, and the last one is if you

start here you will end up like this.

So, this is the asymptotic behavior around. So, asymptotically all the graphs will either

approach e to the it will it will either go to this one or to this one because theta is greater

than 0 and as t goes to infinity then it will approach this curve in one of these ways. We

have a picture of what the trajectories look like around the unstable critical point and this

will be true for theta equal to 3 pi. Now theta equal to 2 pi is a stable critical point. So,

around this the trajectories will again look like this will look like ellipses. So, now, what

you can do is you can make the overall picture. So, you have your trajectories look like

ellipses  and  then  you  have  these  asymptotes.  So,  what  is  happening  is  that  your

trajectories are now they look like ellipses was small.

Then as you go away they will  start  looking like  this,  asymptotically  they will  start

approaching this line, and in this direction it will look like this. Now similarly the next

critical  point  3 pi will  also have the same feature.  So,  3 pi will  also have the same

feature.  So,  that  will  have that  will  show you will  have these 2 lines,  and will  have

graphs that look like this. Now let us look what is happening here. So, suppose you take

any one trajectory. So, this is where your theta is actually greater than pi and you are

starting with omega that is negative. So, you are starting you are starting at a value of

theta that is greater than pi and a value of omega that is negative, and what you will find



is that. So, you started somewhere up here and your omega is negative; that means, you

are moving in this direction.

So, then what you are imagining is that you are starting in this case with your pendulum

something like this,  and your omega being negative.  So,  omega is  pushing it  in this

direction. What will happen is it will go past theta equal to 0. So, you are sending it with

a  all  the  way to  theta  equal  to  0,  it  will  cross  that  and then  it  will  come this  way

exponentially towards this.

So, that is what is happening. So, this is the force this is the phase portrait of this simple

pendulum and now there is a very special curve. So, we saw that you have the simple

harmonic  oscillator  solutions  and now if  you look at  the  simple  harmonic  oscillator

solutions.

(Refer Slide Time: 16:55)

So,  what  is  the  simple  harmonic  oscillator  solution?  So,  simple  harmonic  oscillator

solutions near stable critical points, so, this has the feature that theta. So, we can write

this as half theta dot square minus omega square. So, what we remember is that we had

something like this, theta square was equal to 0 or d by dt of this; this was the was equal

to 0 or we got this was constant. So, we got this was constant.

Now, in this case in; so, this led to theta dot square plus, plus omega square theta square

equal to constant. So, this was the simple harmonic oscillator solution that is the simple



pendulum solutions. Now in this case you will get a slightly different equation what you

will get is. So, let us get back to our equation. So, we have d by dt of theta dot is equal to

minus sin theta into omega square. So, now if I look at d by dt of theta dot square and in

the other the equation was d by dt of theta equal to theta dot.

So, if I look at d by dt of theta dot square. So, this looks like 2 theta dot theta double dot

and if I look at d by d by dt of let us say cos theta . So, this is minus sin theta theta dot.

So, now, what you can see is that these 2 are related these 2 are related to each other. So,

suppose I take d by dt of suppose I take of theta dot square by 2 plus cos plus omega

square cos theta, theta or maybe yeah.

So, if I take minus omega square cos theta. So, if I look at this quantity. So, this is equal

to theta dot theta double dot plus omega square sin theta, theta dot and this is equal to 0.

So, the trajectories satisfy theta dot square by 2 minus omega square cos theta equal to

constant  equal  to  C. Now C can be either  positive or  negative.  So,  C can be either

positive or negative and what we can get from this is that, what I can write is that I can

write theta dot equal to omega is equal to 2 C plus omega square cos theta raise to half.
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So, we have this  expression for omega,  now omega is  supposed to  be real.  So,  you

should have the C plus omega square cos theta has to be greater than equal to 0. Now if

C greater than omega square then you can have then omega square cos theta will always

be implies C as will be greater than minus of absolute value of omega square cos theta;



and what it implies is that C plus omega square cos theta greater than equal to 0 for all

theta.

So, theta is under is not restricted. If C is less than omega square then what you can see

is that C plus omega square cos theta is greater than equal to 0 implies cos theta should

be strictly such that. So, absolute value of cos theta should be less than equal to C by

omega square so; that means, theta is. So, cos inverse of minus C by omega square, and

you know I will just put a minus absolute value of cos inverse of this, should be less than

theta should be less than equal to cos inverse minus C by omega square.

So, what is important is that your theta is restricted. So, in this case, your theta can take

only certain values. So, this is actually your periodic motion. So, and this is basically this

is non periodic motion this is not periodic. So, what is the implication of this; so, based

on the value of C and omega square. So, what your equation will. So, if you take I will

just take a few points just to illustrate. So, 0 pi.

So, the case where C and omega square are this is the rotary case, where the motion is

given by rotations  and 2 pi.  So,  and what  you have is  here you have these motions

showed it. So, when you approach this you will end with something like this, and you

have you also have things like this. Similarly at this next point you will have the same

thing.

So, what will happen is that whenever you are C is less than omega square you will have

rotatory  motion,  when C is  not  restricted  then you will  have this  motion that  is  not

periodic. Now let me show this in the next page let us just put all the all of this together.
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So, what the motion looks like? For certain values of C you will just have motion like

this. So, let us consider around this critical point.

Now when C becomes greater than certain value, then your theta is allowed to vary theta

can go to any values there is no restriction on theta. So, you have this periodic. So, you

might for larger theta you might get something that is not exactly elliptical, you might

get something like this. Now when this is theta large, but C is less than omega square, so,

C is  less than omega square.  So,  theta  is  still  restricted and theta  is  large.  So,  I  am

showing it as not exactly an ellipse it is say this elliptical when it is small.

So, it is periodic, but not ellipse now. So, this is what it looks like and then you have pi

and what you have is if C is greater than omega square then theta can take any values

and you will get solutions that look like this. So, this is the next. So, let me show this in a

different color. So, this is the unstable parts, this is the next critical point that is next

stable  critical  point  where you will  have again  the same kind of  solutions  you have

periodic then you have things like this.

So, what is important is that if you start with something like this then you will just keep

going your trajectory will just your pendulum. So, here you started with a very large

amplitude and it just keeps going spinning and going like this. So, your theta can just

keep your theta can go all the way to infinity it can just keep going round and round . So,

now there is a boundary the boundary of these trajectories when C equal to omega square



this is called a separatrix. Now when C equal to omega square then the pendulum what it

will do is wherever you start off you will exactly go up to the up to pi. So, you start with

some motion and theta will just go all the way to pi and then it will not go beyond pi or it

is right at this point which separates these 2. These 2 stable and unstable modes this

graph where C equal to omega square is called the separatrix.

So, this C equal to omega square this separates periodic and we will call this as unstable

motion  and  unstable  motion.  So,  what  I  want.  So,  this  curve  is  what  is  called  the

separatrix this red curve is called the separatrix, and what I what we what I want to show

in this is how you can take an equation that is completely non-linear. So, the equation

that we start off with it does not look like a linear equation where we started off with a

highly non-linear equation. I say highly non-linear because it contains terms of all orders

of all powers in theta, and we took it and we do the stability analysis around the critical

points and then just by using ideas that the curves should be smooth, we could draw the

entire phase plane picture.

So, this is a very powerful way of looking at this where this problem I can I should also

emphasize that you could also have solutions that look like this in this direction, you

could have more other graphs also you could have more graphs also like this and so this

picture is extremely powerful to get an idea of what the pendulum motion is, and we got

all this ideas without actually solving the equation, but there is one important thing to

keep in mind you should know the solution of the corresponding linear equation only

then you can apply these methods. So, in the next class we look at some of these critical

points in more detail.

Thank you.


