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Vector Operations, Vector Products, Generalized Vector Spaces

Now, in the second lecture of this first week, we will talk more about vectors we will talk

about vector operations, we will talk about vector products and then we will also talk

about generalized vector spaces and just to recap.

(Refer Slide Time: 00:38)

So, in the first lecture we talked the about the basics of vectors. So, we talked about what

are vectors.



(Refer Slide Time: 00:42)

We talked about vector spaces and we talked about linear independence of vectors. So,

we talked about to vector spaces linear independence, we talked about the concept of

basis and dimensionality.

(Refer Slide Time: 00:50)

Now, now let us look at some other vector operations. Now before we do that let me let

me mention a few vectors that you are familiar with from classical mechanics. So, for

example, you are familiar with the with the position vector. So, the position of a particle

r, so the position r this represents the position of a particle and it might be a function of



time. So, r of t, so position of a particle at time t, this is a well known example of a

vector  that  you  might  have  encountered  in  classical  mechanics.  You have  also  seen

vectors like the velocity vector. So, the velocity of a particle v at time t and what is

interesting is that this is nothing, but d r by d t this is the time derivative of r, and the

time derivative of r, is just given by d x by d t and d y by d t. So, it is a vector where each

of the components are time derivatives of these vectors.  And just  to emphasize your

vector r is in this case it is x of t y of t z of t in 3D space.

So if you are in 3D space then the position vector r is written as it has 3 components x y

and t is z and each of them are time dependent. So, they are functions of time now the

velocity is just a time derivative of the position. So, it has components which are just

time derivatives and you can write this this is these components you might denote them

as the x component of the velocity this is also a function of time y component of velocity

and z component of velocity, we use it of t. So you have seen things like position vector

velocity vector you can have acceleration which is a vector you can have force which is a

vector and so on. So these are vectors are something that you have been seeing in in

classical  mechanics  for  a  long  time  and  they  are  also  seen  in  different  branches  of

physics and chemistry.

So, now when we talk about operations on vectors, the vector space is defined vector

space is defined by 2 operations, namely addition and scalar multiplication. So, we know

that if we if you add 2 vectors, you will get another vector and if you multiply a vector

by a scalar you will get another vector.

So, addition and scalar multiplication are necessary to define the vector space. So, you

have to know how to add vectors you have to know how to multiply them by a scalar

now there are other operations you can define and these are additional things that you

defined on the vector space. For example, there is one operation called dot product dot

product or inner product. So, what you do is your, you define the dot product or inner

product of 2 vectors. Now suppose you have 2 vectors r 1 which is denoted by x 1 y 1 z 1

and r 2 which is denoted by x 2, y 2, z 2, then the dot product r 1 dot r 2 this is a scalar.

So, this is a scalar, this is a scalar and which is equal to x 1 times x 2 plus y 1 times y 2

plus z 1 times z 2.



So, this is the usual this is the definition of the dot product. It is also referred to as inner

product. So, dot product or inner product and this is how you usually define it in 2D or

3D space. And this is I should emphasize that this is not the only definition of the dot

product there can be other definitions of the dot product, which I would not go into I

would not go into that they there is a formal meaning of what can constitute an inner

product. So, a dot product or an inner product inner product should satisfy 2 conditions.

I am writing the 2 main conditions there are other conditions which I am not writing

here. So, the 2 important conditions that they should satisfy is that A dot B. So, if you

take 2 vectors A and B when you take the inner product the dot or the dot product. So,

this should be equal to B dot A and A dot A is always if you take an inner product of a

vector with itself then it should always be greater than or equal to 0. In fact, it is equal to

0 only if a equal to 0 it is greater than or equal to 0 and it is equal to 0 only if a equal to

0.

So if these 2 conditions are satisfied then you can you can define an inner product in any

way that these 2 are satisfied. So, this this usual way of taking the inner products just by

just by multiplying it component wise and adding up is just one way of taking an inner

product,  but  there  can  be  other  ways  of  taking  the  inner  product.  So,  long  as  they

satisfied this rule then it is a valid inner product. So I would not talk I would not speak

more about the dot product, I will come back to this this dot product or inner product

when we are talking about generalized vector space, but I will just emphasize that vector

space with inner product is called an inner product space.

So, this inner product space is a kind of vector space, that where the inner product is

defined. You could have vector spaces where no inner product is defined that is perfectly

fine,  you could  have  vector  space  where  dot  product  is  not  defined vector  space  is

defined only by addition and scalar multiplication, but if you have a vector space where

an inner product is also defined which satisfies these conditions then it is called an inner

product space.



(Refer Slide Time: 08:55).

So now I  there  can  be  other  kinds  of  vector  products  that  are  already  that  are  also

defined, and you could you could also define things like cross products cross product of

2 vectors. So, if you had 2 vectors let us say r 1 cross r 2 this is actually the cross product

is unique to 3D you cannot define a cross product in 2D 2 dimensional space. So, if you

had 2 vectors r 1 and r 2 in 3D then you can define a cross product and you know how to

define the usual cross product.

So if r 1 has components x 1 y 1 z 1 and r 2 has components x 2 y 2 z 2 then you write

this as a determinant I j k and you write the components x 1 y 1 z 1 x 2 y 2 z 2. So, you

write this in this form and this is a vector. So this gives a vector. So I can write it as I into

y 1 z 2 minus y 2 z 1 plus j into z 1 x 2 minus x 1 z 2 plus k into x 1 y 2 minus x 2 y 1.

So, this this is the cross product and clearly it is a vector. So, the cross product of 2

vectors gives you another vector.

So we saw that the dot product of 2 vectors gives you scalar the cross product of 2

vectors gives you another vector. And you can also have other kinds of products these are

not the only kind of products, you can also define many different products of vectors. So,

for example, suppose you had you can define something called the direct product. So, the

direct product and I will just use a notation. So, suppose you had suppose you have the

same 2 vectors r 1 and r 2 then r 1 you take a direct product with r 2. Now this I will



denote it by a matrix. So I will just show it as a matrix, I will show it in the matrix

notation.

So, what I do is, I take x 1 and I take. So let us write this in in matrix form. So, suppose

you had x 1 y 1 z 1 and you take a direct product with x 2, y 2, z 2. So notice I have used

I have denoted x, I have denoted r 1 and r 2 as column vectors then the result of this

direct product is something is an object called a tensor which is which is actually which

can be represented in a matrix form. So, x 1, x 2, x 1, y 2, x 1, z 2, y 1, x 2, y 1, y 2, y 1,

z 2, z ,1, x 2, z 1, y 2, z 1, z 2.

So I can represent this by a matrix. So notice what I have done is I have taken x 1 and I

multiplied it by x 2, I have multiplied it by y 2 I have multiplied by z 2 and I have taken

all these products unlike in the cross product, where I took suitable combinations of these

products here I kept all the 9 products. So what I get is a 9 dimensional object and this is

a tensor this is actually a tensor. I mean tensors are again quite important in for example,

these  play  a  role  in  time  dependent  perturbation  theory,  perturbation  theory,  so  for

example, or you can see in non-linear response to external fields.

So,  for  example,  you  can  have  something  called  the  polarizability  tensor.  So,  for

example,  if you take a molecule and you put it in a strong electric field. Then if the

molecule the molecule may not have it is own dipole moment, but it might get polarized

due to the electric field and due to this polarization of the molecule it might induce a

dipole  moment.  So,  this  pole  this  the  tendency  of  a  molecule  to  get  polarized  is

represented by a tensor called the polarizability tensor. So this is one place where you

will see tensors appearing.

So for example, this plays a role in Raman spectroscopy. So I mean you will see tensors

in  advanced  quantum  mechanics  and  spectroscopy  courses,  but  what  I  wanted  to

emphasize through this is that, you know you it is not you know vector products can be

defined in many different  ways. There are no there is  no unique way of multiplying

vectors, but you can define several different ways to multiply vectors.

Now next I want to generalize the idea of vector spaces. So, we have seen 2D and 3D

vector spaces. Now we can easily construct as he said vector spaces can be generalized

can be generalized to many dimensions.



(Refer Slide Time: 15:05)

You do not need to look only at 2D or 3D vector spaces. You can look at you can look at

many different dimensions. So we already saw 4D for example, you can go 4D 5D and

so on. Now you can also go to a different type of vector space which is called the infinite

dimensional vector space vector spaces.

For example, I will just give one example of an infinite dimensional vector space. So if

we take function of one variable. So, for example, I say f of x. Now, f of x is a function

of one variable. Now you consider the set of all possible functions, of one variable. So,

we are taking the set and let me denote by curly braces. So, this set f of x of all possible

functions of a single variable x. And let us say for convenience that x is a real number it

does not matter. So, if you take the set of all possible functions of one variable;  that

means, this you can easily show that this is a vector space and why is it a vector space

because you add any 2 functions, you will get a third function which is also a which is

also a function of one variable.

If you multiply a function of one variable by a scalar you will get another function of one

variable and the clearly is 0 is also a function of one variable, is a constant function you

can have 0 which is a constant function of one variable, you can have a negative of a

function which is the additive inverse of the function. So, clearly the set of all possible

functions of one variable is a vector space. It satisfies all the necessary conditions to

form a vector space.



So, you can think of functions as vectors. So, each function can be thought of as a vector.

This is a very important idea and it is actually central to all of quantum mechanics. Now

each function can be thought of as a vector, now what you can do something else you can

ask suppose you had f 1 of x and f 2 of x. Suppose you had 2 functions you as I said you

can think of them as 2 vectors or 2 vectors. 

Now you can ask a question are these 2 vectors linearly independent. So, when are f 1 of

x and f 2 of x linearly independent, and in this case the answer is that if you take c 1 f 1

of x plus c 2 f 2 of x equal to 0. And you say that c 1 and c 2 are both are not equal to 0

or not both 0 and for some if they are linearly independent if c 1 f 1 of x plus c 2 f 2 of x

equal to 0 only for c 1 equal to c 2 equal to 0. So, if this condition is only satisfied when

c 1 equal to c 2 equal to 0, then you say the vectors are linearly independent. If this is

satisfied for some c 1 and c 2, which are both not 0 then I can write f 1 of x equal to

minus c 2 by c 1 f 2 of x or I can write f 1 of x as a scalar, minus c 2 by. So, c 1 is a

scalar. So, I can write it as a scalar multiple of f 2; that means f 1 of x.

So, if linearly dependent, then we can write this form and then f 1 of x is proportional to

f 2 of x. So, 2 functions are linearly dependent only if one is proportional to the other.

So, any 2 functions that are not proportional to each other will be linearly independent.

And  this;  obviously,  implies  that  the  number  of  basis  functions  number  of  linearly

independent functions is infinite;  you can have infinitely many functions that are not

proportional to each other. In fact, I can take any 2 functions and multiply them and I

will get a function that is not proportional to either of them.

So, basically what I want to emphasize is that this set of all  possible functions is an

infinite dimensional space. So, this is an infinite dimensional vector space. And so we

can see this space of functions as an infinite dimensional space, you need not you can

you  can  construct  several  other  different  infinite  dimensional  vector  spaces  which  I

would not get into, but let me just conclude this lecture by mentioning that you can also

define inner products on space of functions.
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So, one example this is an example. So, suppose you had f 1 of x and f 2 of x these are

functions their inner products I will just write it as f 1 comma f 2. So, these are these are

vectors you be think of them as vectors. So, you may define them in this form integral f 1

of x, f 2 of x d x, over whatever the range of x is. So, if x goes from minus infinity to

plus infinity it goes over that range. So, over the entire range of x this would be a valid

definition of inner product, because clearly f 1 comma f 2 equal to f 2 comma f 1 and f 1

comma f 1 is greater than equal to 0. Because f 1 comma f 1 will give you f 1 square then

f 1 a square of any number has to be greater than or equal to 0. And so the integral of a

square of a number of a function has to be greater than or equal to 0.

So, you can also define inner product on these on these infinite dimensional spaces and

again  such  inner  products  or  things  that  you  will  see  very  regularly  in  quantum

mechanics. And what I have tried to show you in the first 2 lectures through this idea of

linear independence and basis is that you can generalize the concept of vectors to greater

than 2 or 3 dimensions you can in fact, go to infinite dimensions you can look at spaces

of functions and you can you can look at all kinds of spaces.

So just to conclude let me mention that suppose you take a function sin x, sin of x and

cosine of x. These are linearly independent. Similarly, if you take sin of x and x sin of x,

the x sin of x is some other function these are also linearly independent. You can take x

and x square these are also linearly independent, but you can take something like sin x



and let us say 5 times sin x, these are not linearly independent because. So, the only

functions that are linearly independent are those which are related to each other by a

constant. So, if you take the ratio of them you should get a constant this independent of x

only those functions are linearly independent and this clearly shows that the space of

functions is infinite dimensional you can have infinitely many functions that are linearly

independent.

So, your basis set has infinitely many vectors. So in the next class I want we will go to

other things, you can do with vectors we will go to vector differentiation and functions of

vectors and so on.


