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In module 2 we have discussed matrices and, so in the first  lecture we talked about

matrices as linear transformations of vectors. Then in the second lecture we talked about

special matrices, we talked about symmetric, orthogonal, Hermitian and unitary matrices.

Then  in  the  third  lecture  we  talked  about  rotational  matrices  and  we  talked  about

eigenvalues  and eigenvectors  of matrices,  and then in  the 4th lecture we touched on

determinants and we talked about inverse of matrices. 

So,  now, this  material  you can find in Mc Quarrie  1st  edition  chapters  9  and 10 or

Kreyzig 8th edition chapter 6 and 7. And let me emphasize that in both these books they

do many more things with matrices, many more things with matrices and determinants

and vectors such as change of basis, they look at transformations and so on. But, you

should it is all these are, there are severally several useful tools involving these and we

have just touched upon a few of them here.
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So, now I will do a few practice problems and the first one is to is solve a system of

linear equations. So, let us take the system - let us say x plus y plus z equal to 2 and then

in then we have x plus y or 2 x minus y equal to 1 and you have x plus 2 y minus z equal

to 3. So, suppose you want to solve this system (Refer Time: 02:27) equations, so you

want to solve them and get the values of x y z. So, what you do is you look at your

matrix. So, the matrix of the; the matrix of coefficients is 1 1 1 the second row is 2 minus

1 0. So, I can this as 0 times z and then the third row is 1 2 minus 1. So, this is your

matrix of coefficients. So, this times x y z this is equal to 2 1 3. So, I can write this in this

form.

And so now I can write x as this determinant of 2 1 3, 1 minus 1, 2 1 0 minus 1 divided

by 1 1 1, 2 minus 1 0, 1 2 minus 1. You can easily calculate see the denominator is. So,

this will give you 8 by 8 equal to 1. Similarly y is equal to is equal to 1 and z equal to 0

this is what you will find. So, you can verify that you get this as a solution and you can

see that if x is 1 y is 1 z is 0 then x plus y is 2 2 x minus y is 1 x plus 2 y minus z is 3,

solution using Cramer’s rule.

Now, the next problem that I want to do before I go that let me just mention that you

know you can either  solve this using Cramer’s rule.  So, there is an alternate  method

using or equivalent method using a technique called Gaussian elimination and in this

what you do is you do various operations various elementary row operations and convert



your coefficient matrix to a diagonal matrix and once you convert it, once you convert it

to a diagonal matrix you can immediately determine the values of x y z. So, I will not be

doing gauss elimination, but I expect that you are familiar with gauss elimination.
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Now, the next problem that I want to do is this. So, show that the product of R z theta

followed by R x phi show that the let me not call it a product, show that the operation of

R z theta followed by R x phi can be represented by an orthogonal matrix and what I

mean is you show it explicitly. So, let us try to show this explicitly. So, what you mean is

you have a vector x y z, you operated on it by R z of theta. So, when you operate it

operate on it by R z of theta you, so R z of theta is cos theta minus sin theta 0, sin theta

cos theta  0,  0 0 1 and then you operate  on this  vector.  So,  this  operation gives you

another vector and you operate on this vector by R x of phi. So, what is R x of phi? That

is 1 0 0 cos phi minus sin phi sin phi cos phi.

So, when you do this. So, you get, so let me call this x prime y prime z prime. Now I can

write this, what I can do is I can write this I can do the 2 matrix multiplication first and

then multiplied by the vector. So, suppose I do the 2 suppose I multiply these 2 matrices

what will I get. So, 1 into cos theta, I will get a matrix minus sin theta 0, then this second

column will be cos phi sin theta minus no will just be cos phi sin theta, this into this, this

into this, this into this, now the third. So, then now the next element will be 0 into sin phi

0, so you have cos phi cos theta theta and the last one give me 0 0 and I have minus sin



phi. Now in the last column will have 0 sin phi sin theta and 0 sin phi cos theta and I

have 0 0 and I have cos phi.

So, this is what my this is what my this product of 2 these 2 matrices looks like and this

when it operates on x y z will give me x prime y prime z prime. Now I want do this

explicitly, but you can show that, you can show 2 things you can show that this is an

orthogonal matrix. You can show that this matrix is basically orthogonal, by show I mean

it is; obviously, orthogonal because rotation preserves direction preserves magnitude not

direction preserves magnitude of a vector, but you can explicitly show this by showing

by doing the following.

So, x prime is equal to. So, you say x cos theta minus y sin theta, then you have y prime

is equal to x cos phi sin theta plus y cos phi cos theta minus z sin phi and and z prime is

equal to x sin phi sin theta plus y sin phi cos theta plus z cos phi.
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So, now you can show this explicitly by showing that x prime square plus y prime square

plus z prime square is the same as x square plus y square plus z square can show this,

this we can prove that R x of phi R z of theta is orthogonal.

So, so we sort of went a bit round about. So, we took I mean we intuitively know that a

product of rotations should be an orthogonal matrix because a product of rotations will

preserve the magnitude of the vector. So, if each rotation will preserve the magnitude.



So, the product should be an orthogonal matrix, but we can show it explicitly by doing

through  this  procedure  by  seeing  what  the  new  coordinates  are.  So,  this  is  a  final

coordinates x prime y prime and z prime, and we express them in terms of x y z. Now if

you square this you will get various terms. So, will get x square cos square theta you will

have y square sin square theta, you will have and you will have the cross terms x y 2 x y

cos theta sin theta. 

Similarly when you take y prime square you will get you get various terms and similarly

z prime square will give you various terms and if you add all of them you collect all the

terms you will get that this they satisfy this relation and by showing this you can prove

that  this  product  of  rotations  yields  in  orthogonal  matrix,  yields  a  matrix  that  is

orthogonal.

Another way to do this yet another way to show this is to look at. So, if you say y is

equal to R x of pi R z of theta y vector times x. So, if you take a vector x operate bit by R

z of theta and by R x of phi. So, I can say I just call the corresponding vector y and what

you need to show is that y transpose y. So, if you think of y as a column matrix and y

transpose y is equal to, now, this is transpose of this whole thing, now when you take the

transpose of this whole thing you have to take the transpose in the opposite order. So, it

is x transpose R z theta transpose R x phi transpose times R x of phi R z of theta x. So,

this is this is y, this is y, this is y transpose.

Now, now I can do this products in this way. So, I would multiply these 2 things first. So,

R x of phi transpose R x of phi, now since R x is a rotation about x axis this is an

orthogonal matrix. So, the transpose is nothing, but the inverse. So, this product is just

the identity. So, I can write this as x transpose R z of theta transpose, this is just identity

so I do not need to write anything and so, I just copy the R z of theta x I want to show the

vector this. So, let me just put vectors onto all the x’s, x’s and y’s.

So, now again I  have R z of theta  transports  R z of theta  which is nothing,  but the

identity.  So,  this  is  nothing,  but  the identity  matrix,  this  equal  to  x transpose x.  So,

clearly this product is orthogonal. So, a third way to show it is this and so, if you take

product of any 2 rotations you get another orthogonal matrix.
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Next problem that I want to do has to do with Hermitian matrices and, this is problem 3

is this matrix 4 i 2 plus 3 i and since I want to talk about Hermitian matrices I am making

it a complex matrix 1, 2 minus 3 i 1 3, is this Hermitian. So, if you call this as A equal to

this then A star is equal to 4 minus i, so we take the complex conjugate of i is minus i

complex conjugate of 2 plus 3 i is 2 minus 3 i, complex conjugate of minus i is i, this is 2

minus i 1 2 plus 3 i 1 3. So, complex conjugate of a real number is just itself and if you

take a dagger this is nothing but it takes a complex conjugate and then you take the

transpose. So, this is equal to, so you are just going to take the transpose of this matrix

and transpose of that matrix is just given by 4 i 2 plus 3 i minus i 2 minus i 1 and 2 minus

3 i 1 3.

So, this is clearly this is not equal to A, and the reason it is not equal to A is because of

this, everything else is the same it is only this 2 minus i and in this case you had 2 plus i.

So, that was the difference. Now what I want to emphasize is that for a Hermitian matrix

implies  that  the  diagonal  elements  have  to  be  real.  So,  the  diagonal  elements  of  a

Hermitian matrix have to be real the off diagonal elements should be complex conjugates

of each other. So, for example, you had a 2 minus I here or 2 minus 3 I then you should

have a 2 plus 3 I there. So, that is the condition for a Hermitian matrix.

Now, next  part  of  this  problem,  problem 3 b,  show that  eigenvalues  of  a  Hermitian

matrix are real. So, suppose you have a Hermitian matrix you show that its eigenvalues



have to be real. So, suppose you have a matrix A and x equal to lambda x. So, if A dagger

equal to A then lambda star equal to lambda. So, you have to show this, this is what you

have to show, you have to show that if A is a Hermitian matrix then its eigenvalues are

real.
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And you can show this quite easily. So, suppose you take A x equal to lambda x now this

implies that A star you just take complex conjugates on both sides. So, you get A star x

star is equal to lambda star x star, now if you pre multiply by A by x dagger, you do x

dagger A star x star is equal to lambda star x dagger x star. So, now, if you do another

thing, let us say you take the first equation and you take its Hermitian conjugate. So, if

you take this equation and take its Hermitian conjugate you will  get,  so you will  be

taking both the transpose and the complex conjugate. So, what you will get is x dagger A

dagger. So, the order changes because when you take the transpose of a product, you get

the product of transpose in the opposite order.

Now, lambda is just a scalar. So, I can just write lambda star and x dagger I should write

x dagger. So, now, if I post multiply by if I post multiply by x star yeah. So, now, if I use

if I post multiply by x by just post multiplied by x what I will get is x dagger A dagger x

is equal to lambda star x dagger x and A dagger x is nothing, but A x. So, this is A x. So,

this is equal to A x this is equal to lambda x. So, what I get is that lambda times x dagger



x is equal to lambda star times x dagger x or lambda equal to lambda star, so implies

lambda is real.

So,  Hermitian  matrix  has  real  eigenvalues  further.  So,  distinct,  so  eigenvectors

corresponding to distinct eigenvalues are orthogonal and what we mean by this is that.
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Suppose you had A x 1 is equal to lambda x 1 and A x 2 equal  to mu x 2. If A is

Hermitian then x 1 dagger x 2 is equal to x 2 dagger x 1 equal to 0. So, x 1 dagger x 2 is

a  scalar  and you will  show, you will  be able  to  show that  if  this  of  course,  we are

assuming that lambda, lambda not equal to mu. So, they are distinct eigenvalues. So, the

eigenvectors corresponding to distinct eigenvalues are real, this is oh sorry, eigenvectors

corresponding to distinct eigenvalues are orthogonal.

Now,  now notice  that  the  definition  of  orthogonality,  definition  of  orthogonality  for

complex  vectors.  So,  this  involves  transpose  and  conjugate.  So,  whenever  you  are

dealing  with  complex  vectors  or  complex  matrices  then  instead  of  just  doing  the

transpose  you  should  do  a  transpose  followed  by  the  complex  conjugate.  So,  this

illustrates 2 properties of Hermitian matrices which are actually extremely important. So,

Hermitian matrices are central to quantum mechanics.

So, Hermitian matrix you can write a differential expression for an operator and so, you

can  define  something  called  a  Hermitian  operator  or  you  can  write  a  matrix



representation  of  an  operator  and  that  involves  Hermitian  matrices.  So,  the  idea  of

Hermitian  quantities  are  central  to  quantum  mechanics  because  they  have  real

eigenvalues, eigenvalues corresponds to observed values. So, if you have an observable

then its value should be real. So, it should have real eigenvalues and the matrix that has

real eigenvalues are the Hermitian, is a Hermitian matrix.

So, this idea of Hermitian matrices plays a very important role in quantum mechanics.

So, with that I will conclude module 2.


