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In the last lecture we were discussing about the Energy Transfer,  and specifically we

were discussing about the non-radiative energy transfer process.

(Refer Slide Time: 00:31)



So, in the non-radiative energy transfer process what I showed you that D star is present

and which is interacting with A and this energy is transferred from D to A star, as a result

D is getting deactivated and A is now in the excited state. So, if I now tell you the this

molecule D star as the one electron is over here another is over here, and this A is present

A is  in  the  ground  state  then  the  situation  is  that  these  two  a  and  D  are  actually

interacting over a distance and which is converting this a this D as deactivated and a is

now in the excited state.

And I  said  that  for  this  dipole  interaction.  The interaction  which  is  responsible  is  a

columbic type of interaction and then again I showed you that equation here this k ET

can be written as this kappa square divided by tau D r to the power 6 alright and then

some constant like this way and I said that this kappa squared is where this r equal to

distance between donor and accepter and this this should be tau (Refer Time: 02:23) tau

D 0 and then kappa squared is my orientation factor. 

This kappa squared depends on the relative orientation of the donor and the accepter, and

if  you look at  this  specific  form of  this  kappa squared  let  me  draw this  donor  and

accepter this dipoles like this way. Let us say this is the donor dipole oriented in this

fashion and this is this accepter dipole is oriented in this fashion and this is the distance

between donor and the accepter. So, this is my D, this is my A, now if you extend this

line the line connecting the D and A and then you measure this angle the angle between

this line and the accepter and in this angle let us say is theta A and this angle similarly is

let us say theta D.

And if you make a plane with this donor dipole and this line the line connecting donor

and accepter and donor dipole, with these if you make a plane and the accepter dipole

and the line connecting the donor accepter with these if you make another plane like this

then the angle between these two plane let us say termed it as theta T. So, this kappa

squared actually depends on these 3 theta values with this form as kappad square cos sin

theta T right minus three cos sin theta D into cos sin theta A and whole square. So, this is

my expression for the kappa squared.

Let me give you three different examples alright. So, let us say case 1, let us say this is

my donor dipole and this is my accepter dipole right and the distance between them is r

right. So, that is my distance, but that kappa squared will not going to depends on that



distance it will only depends on that orientation, but total k ET value will (Refer Time:

05:54) obviously, depends on the distance. And you note here that dependency of this

distance is one over r to the power 6 little change in r will change the k ET value in

enormously right.

I will come later I will tell all those things in detail. So, in this case if I tell you that what

is the value of theta A, what is the value of theta D and what is the value of theta t, what

will be your answer theta A is equal to 0 theta D equal to 0, theta T equal to 0. So, for

these values of theta kappa squared will be equal to cos sin 0 minus 3 cos 0 cos 0 right.

So, this will be equal to 1 minus 3; so minus 2 square. So, is equal to 4. I will take

another (Refer Time: 06:58) case two this is my accepter same distance r (Refer Time:

07:11) this is my donor and this is my accepter for this case two I will also have different

values of theta A theta D theta T. So, theta A is equal to 90, theta D is equal to 90 and

theta T here will be equal to 0. So, in this square kappa squared will be equal to 1 right.

Let me show you another case which is case 3, in this case let me take my dipoles this

donor and accepter like one is like this, this is my donor and this is r right and this is my

accepter. Such way that theta A, the theta A is equal to 90 right theta D is also 90 and the

angle between these two is also 90 degree right. And this will going to give me kappa

squared equal to cos sin 90 minus three cos sin 90 cos sin 90 right. So, this is going to be

equal to 0. So, you see depending on the orientation of these two dipole mu D and mu A.

The value of kappa squared actually varying a lot starting from 4 to 0 and that is the

problem. Suppose you now you think of a situation you have (Refer Time: 09:19) the

donors right. And the how these donor molecules will orient in solution that will not

going to depends on anything, because as we have already seen in the florescence (Refer

Time:  09:33)  on  during  our  discussion  on  florescence  that  the  orientation  of  these

molecules in a solution is random, that is called the isotropic orientation.

That  means  the  donor  molecules  will  orient  in  all  possible  conditions.  Similarly  the

accepter will also orient randomly in all possible orientation; that means, the theta A,

theta  D, theta  T the values of theta  A, theta  D, theta  T could be anything right.  So,

because of this isotropic orientation of the donor and the accepter for solution, but for a

rigid system like a biomolecules let; I will talk to the I will talk about this biomolecule

later on, but it is for sure that for solution state that the orientations of the donors and



accepters are random and is a isotropic emission; so better to have a case four where I

will take these randomizations of the donor and its accepter.

(Refer Slide Time: 10:47)

So, for this case 4 what I have is the donor and accepter are oriented randomly, this are

isotropic right orientation, in this case kappa square is retained as average value right.

So, I will integrate 0 to pi cos sin theta T minus 3 cos sin theta D cos sin theta A square D

theta T, D theta D, D theta A and (Refer Time: 11:56) normalize it with 0 to (Refer Time:

12:00) theta D theta T theta A. And if you now the value of this integral is very simple

which come out comes out to be 2 by 3. Now you remember our original location this k

ET I had written this as kappa squared by tau D r to the power 6 then I said this is a

constant right. So, this is (Refer Time: 12:38) 0. 

Now, if I consider this random orientation of this donor and accepter then this quantity is

also will come inside this constant. So, I will trite this as A constant divided by tau D 0 r

to the power 6, but remember that this constant has spectral overlap integral within it

means this is a constant for a definite pair of donor and accepter. So, this is a constant for

a definite pair of donor and accepter and that constant is written as R capital R 0 to the

power 6, that I can do that is mine (Refer Time: 14:09) my desire right (Refer Time:

14:10) capital R 0 to the power 6.

And if you know this overlap integral between this donor and accepter and from the

expression of this quantity over here you will be able to calculate the value of R 0 and



that value of R 0 is fixed for a definite donor and accepter. So, the final equation will be

k ET is equal to 1 over tau D 0, R 0 by r to the power six and that particular constant R 0

is known as forster distance, that is known as forster distance.

Now let me define a quantity which is called the efficiency of energy transfer denoted by

capital E right let me define and then I will explain what is that. Efficiency of energy

transfer is denoted by capital E which is equal to the rate of deactivation from the excited

state  to the ground state  right  the rate  constant  that  is  leading to the energy transfer

divided by the total right like similarly for the quantum yield I divided by k e r by k e r

plus k NR for fluorescence quenching what do we had that for the quantum yield that is k

e r by k e r plus k NR plus k q into q.

So, in this case another path way which is non-radiative path way; that means, energy is

taking out by the system this k capital ET. So, in this case the efficiency should be k

capital ET divided by the total rate constant right and total rate constant means inverse of

tau D 0; that means, this k r plus k NR. And then that another rate constant which is

responsible for the deactivation is k capital ET rate constant of the energy transfer. So,

this efficiency of energy transfer can be easily retained as k ET divided by tau D inverse.

So,  in  this  tau D inverse I  am going to  have this  k  r  plus  k NR right  because  you

remember tau D (Refer Time: 17:04) tau D equal to 1 over k R plus k NR.

So,  I  am going to  have these all  the  time  this  plus  k ET right  and you also please

remember that this k ET is a function of r small r this is a distance between the donor and

accepter and that distance dependence is very high is r to the power 6. So, I better write

here as a function of r this is a function of r. So, this is also function of r. So, efficiency is

also a function of r.  So,  then I  can just  simply put the expression of k ET r in  this

equation right. So, if you do that. So, then this will be tau D. So, this is again tau D 0 tau

D 0 inverse into R 0 by R to the power 6, right from here divided by tau D 0 inverse plus

tau D 0 inverse to R 0 by R to the power 6.

So, if you just simplify this expression what you will going to see is one divided by 1

plus R by R 0 to the power 6 you will get such kind of expression right. So, efficiency of

energy transfer is something like this, as I told u earlier that if this is my emission spectra

D in presence of accepter.



(Refer Slide Time: 19:06)

There is a decrease in the intensity and there is a increase in the intensity of another

wavelength right like this. So, here the intensity will decrease and here the intensity will

increase. If you monitor the fluorescence intensity at this wavelength and fluorescence

intensity at this wavelength then with increase in (Refer Time: 19:59) of this accepter

concentration.  That means,  the average distance between the donor and accepter  will

change  you  will  get  a  reduced  in  the  fluorescence  intensity  and  in  wavelength  the

fluorescence intensity will increase.

So, that is also in some other words must be corrected with the efficiency of the energy

transfer,  suppose  you  have  add  some  molecule  a  and  nothing  happen  alright  the

fluorescence intensity remain same as without the presence of this accepter that mean

nothing happen then the efficiency of energy transfer if I now may say like that then the

efficiency should be 0 that is it. And let us say for example: you have added this accepter

and the whole complete quenching of this fluorescence right there is nothing it is like this

0 over here and only this guy is like this it means the efficiency is 100 percent where the

efficiency is equal to 1. So, if I now take this efficiency in a scale between 0 and 1. So, I

can tell this efficiency in terms of the fluorescence intensity in presence of accepter and

in in absence of accepter that is it.

So, if I this efficiency E is typically retained as one minus I D A by I D right. So, you see

here this efficiency when the I D A; that means, the intensity of donor in presence of



accepter is same as I D; that means, there is no change in the emission intensity. So, then

I  D A by  I  D equal  to  1  1  minus  1  equal  to  0;  that  means,  the  energy  transfer  is

completely inefficient I mean 0 nothing. Now you consider that after addition of this

accepter the fluorescence intensity became 0 I mean from a some value it (Refer Time:

22:11) could be 100 from 10 to 0 or 1000 to 0, but it (Refer Time: 22:12) whatever it is

from there it is 0; that means, this 0 by something is 0 1 minus 0 equal to 1. So, then the

efficiency is one; that means, (Refer Time: 22:23) fully efficient energy transfer.

Similarly, this efficiency also can be retained in terms of the lifetime; in case of energy

transfer  this  lifetime of this  species  will  also change,  because of the creation of this

additional pathway. What is that additional pathway? That I wrote in just few minutes

back as k ET that is my additional pathway that is why this when I have calculated the

efficiency right I have retained this k ET divided by the total rate constant and that is a

rate constant. So, the fluorescence lifetime will also change. That means, I can write also

this efficiency in terms of 1 minus tau D A divided by tau D. So, here this tau D is the

lifetime of the donor in absence of this accepter and tau D A is a lifetime of the donor in

presence of accepter.

Now, you (Refer Time: 23:21 ) you can say that if I increase the accepter alright then;

obviously, this (Refer Time: 23:27) will be different, but the reason is not because you

have  more  accepter  the  reason  is  that  the  average  distance  between  the  donor  and

accepter will decrease we have those one donor and 100 accepter then from donor to the

accepter distance average distance is something, if you have one million then average

distance will be much smaller. So, that I why you are going to have it because the only

thing which is depend here is the distance right and (Refer Time: 23:52) for a definite

donor accepter pair that r capital R 0 is a constant.

So, telling this now I can simply do one thing I can (Refer Time: 24:09) a plot like this

where this y axis is my E and this x axis is my r and now I can comment on that right

what will be the value of E that efficiency as I change my r value right that that that will

automatically come right. So, (Refer Time: 24:38) what equation I already have? I have

this  equation  in  involving  the  efficiency  of  the  energy  transfer  as  well  as  the  r  the

distance between the donor and accepter.



Here by this way I will going to calculate this efficiency right and then here capital E

equal to 1 over 1 plus r by R 0 to the power 6 with this I will plot this right. So, let us

take a value when r equal to 0 that small r equal to 0 here is my r when this small r equal

to 0. So, it is over here. So, 1 plus 0 to the power 6 and that is inverse. So, this is equal to

1. So, this value will be equal to 1.

And when r equal to R 0 right let us say take a point over here, where this value of r

equal to R 0 right in that case this R 0 by R 0; that means, 1, 1 divided by 2 equal to 0.5.

So, here I will get 0.5 here is my point and here is my another point and when r equal to

twice R 0 then this twice R 0 divided by R 0 that is 2 to the power 6, that is 2 to the

power 6 that is 64 that 1 divided by 65 that will come about 0.015. So, it is almost over

her almost over here and in between if you plot the value will come what we will going

to see the plot will something like this right. So, from here I can at least tell that when the

efficiency of energy transfer is just 0.5 that r is equal to capital R 0 which is my first

(Refer  Time:  26:55)  distance  right.  So,  let  us  finish  here  and  we will  continue  our

discussion on the next day.

(Refer Slide Time: 27:04)

Thank you very much.


