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First we have all ready looked at this, the idea of computing and in that we are used to 

these kinds of computers, where the basic idea remains the same which was concede way 

back in 1936, before the computers actually existed, showing that a computer essentially 

is a device which uses limitless memory and a scanner to scan the memory backward and 

forward and read it by symbol to symbol and write additional symbols to execute any 

computation that is the Turing machine. The whole idea of this principle still works and 

it is the same one which is given for this computer. That is the basic idea behind the 

concept of any classical computer. 
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The classical computer has some limitations, even the fact you can have limitless parallel 

computers they, which can do really complex work, but they are basically complex 

Turing engines which employ multiple computing modules dealing with pieces of 

incoming data which are chunks of bytes instructions etcetera, but there are problems 

which are beyond the competence of a universal Turing machine. For example, we 

cannot predict whether a program will terminate and this is the halting problem, famous 

one and then there is classes of problems which have been delineated and are solvable 

for example, in polynomial or exponential time and those whose answers are checkable 

in polynomial time. 

These are the classes which will be looking at. These are in, if anything can be solved in 

N polynomials then it is a problem which is to be looked at in this fashion, but as these, 

this is an N P problem, but as these become larger and larger, it becomes more difficult. 
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We will be looking into these things more and more and we have also discussed about 

Moore’s law before which was given by Gordon Moore who is a founder of Intel 

cofounder of Intel who made an implicit statement based on the fact that he saw that the 

number of Transitors per chips, essentially doubled every 18 months and this tendency of 

the computer world has kept on going since the beginning of the computers for a very 

long time. And that is kind of very interesting because now we are talking about 

switching which are at very small scales and the current VLSI, the very small very large 

scale integrated circuits that is VLSI can be as small as a few tenths of a micron and even 

smaller actually they have reached nanometer scales. 
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The principles of quantum mechanics are going to come and in the spirit of Feynman, the 

mystery associated with quantum mechanics is something which you perhaps cannot 

really explain, but what you can do is you can just look at it how it works because you 

cannot really, in his words we cannot make the mystery go away by explaining it. That is 

how you look at it and this was done, this is his famous statement with respect to the 

double slit experiment, where interference fringes and things were found for the first 

time. 
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In terms of quantum mechanics, the beginning or basically the use of quantum 

mechanics in computers started in 1981, where this statement was made that the classical 

Turing machine would probably experience an exponential slowdown because of the 

probability issues as you become smaller. And the immediate other side of the story was 

there the quantum system with many particles is described by Hilbert Space whose 

dimensions are exponentially large in the number of particles which means that it can be 

utilized for its advantages and this statement that this has its benefits, I do not know what 

happened sorry; this has its benefits where described in a conference called Cleo in this 

1981. It is in 1981; Cleo conference Feynman first coined the term which is quantum 

computer. 

Then David Deutsch in 1984, proposed the idea of universal quantum computer, it was 

quite soon that this idea was brought out and the Qubits required were the number of 

particles in the system that is how it was defined and then it when through a lot of 

developments and about a decade later, satellite talked about a standard quantum 

computer which can be programmed to stimulate local quantum systems efficiently. This 

was one of the important statements that he was able to make and he was able to show he 

was a able to take a stock of all the developments over the more than a decade by that 

time and showed that it quantum computers has been extended to larger classes of 

quantum systems. 

(Refer Slide Time: 06:22) 

 



Well quantum mechanics essentially are systems which involve electrons, protons, 

neutrons, photon, quarks, neutrinos, any of them can be our potential Qubit in some 

sense and it is a system of laws that describes the behavior of such objects. 
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This was predicted way back then that by 2020, we will store one bit of data on objects 

of that size. Not sure we are there yet, but we are not too far from 2020 either. Let see 

what happens. 

The one of the interesting concepts of quantum mechanics is that the atoms size objects 

behave in unusual ways because their state is generally unknown at any given point of 

time and changes if you try to observe it. Now this is a very important aspect of quantum 

mechanics which is different from classical works. In a classical object whatever you 

have, the solution is there. In a quantum object unless you measure it, you do not know 

what it is. Secondly, if you measure it you cannot be sure that it is the same thing that 

you measured because the act of measurement changes it. There is also this principle of 

standardization which exists in this quantum world. 

And simultaneously several properties of the systems of such systems can be 

manipulated and measured simultaneously that is one of the other advantages of this. 
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Anyway these are the motivations as to how you would be going and why you would be 

going quantum and we have done this in class, I am just going to re iterate here, it to 

bring you up to speed – one is that as we go smaller to avoid wastage in time energy 

etcetera because as we go smaller the time taken to travel goes lesser, wastage of time is 

lesser. Energy required in dissipation goes down and eventually go to quantum. That is 

the way of looking at it. The other option is that in order to be energetically most 

favorable you want to act reversibly that comes from thermo dynamic principles; that 

gives minimum energy loss and the biggest important point is Turing machine is not 

reversible, but the quantum evolution is reversible. 

A classical bit again, the other important thing which is different is a classical bit can 

either be 1 or 0; however, a 2 state quantum system can be in an arbitrary number of 

super positions. All such states can be processed at once in quantum operations. For 

example, this continuously the system getting tipped is an example of a superposition 

principle. While classical essentially means either one or the other in a spin system, in 

quantum systems it is a continuous tipping kind of a situation, where in the middle 

wherever whatever you are you can see them. So, those are our superposition states and 

we can use them. 

There is this concept of hidden variables in physics which have been used quite often to 

even talk about these a superposition and in between conditions, but we need not worry 



about this right now. It was assumed that quantum systems essentially meant that they 

were lots of variables which you cannot see and they were called hidden variables is one 

of the concepts of quantum physics or foundations of quantum mechanics, but it was 

found that just by thinking that there are hidden variables you can explain quantum 

mechanics that did not work. Similarly a quantum process also therefore, will not 

perhaps be reduced to a Turing machine. 

But on the other hand, we will be discussing something called a quantum Turing 

machine which will be an analog to the world of computers that we know it. 
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The definition of quantum computing which will use is manipulation of quantum 

mechanical systems for information processing and there are 2 terms here. Let us be 

clear, one is quantum computing and the other one is quantum computer. Please 

remember, they are not the same thing. It is like noun and adjective. You do not want to 

use a noun in place of noun and objective and vice versa. A quantum computer is the 

noun and the computing is actually the adjective. The act of manipulation where do have 

actually, act of manipulation is the quantum mechanical system for information 

processing, that is quantum computing whereas, quantum computer is a device that 

processes information in a quantum mechanically coherent fashion and it could perform 

certain types of calculations. Now it is important to mention this certain types of 

calculations not that we have going to at least at this point of time say that for every class 



of calculation it will be better, but for certain parts it can be far more efficient and this is 

again the example of how they look different, in bits you can either be here or there 

whereas, in quantum bit or Qubit you could be anywhere in between and all possibilities 

of these betweens exist, which is sort of not an issue for the bit case. 
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Interestingly way back in 1982, Feynman essentially looked at quantum computing from 

a different perspective. He was not thinking in terms of a computer that can be faster or 

something. He basically looked at it saying that since all natural processes are at the base 

or at the fundamental level, quantum mechanical, you can by using quantum computing 

realistically stimulate quantum systems. That was his basic principle and his basic 

interest being a physicist of his kind. That was his main idea that you could stimulate 

quantum systems in the most appropriate fashion once a quantum computer is here. That 

is his way of looking at it. The first realistic application came as late as 1994 by Shor, 

Peter Shor showed that it is possible to actually find the primes or basically factorize 

integers into their primes in a much faster way then it is possible by any foreseeable 

classical computer because there is the place where you can see an exponential speedup 

by using a quantum computers. We will do this particular problem.  

And the other important place right after this which became very popular is the Grover’s 

algorithm, which basically searches database. Now you might thing that you know this 

speedup of this is not as much as a Shor’s algorithm, but it is usually popular because 



most of the problems that you have in a quantum computer finally, boils down to a such 

problem because in most cases what happens is you come down to a point when you 

would say the answer exists. Once you say an answer exists its essentially a search 

problem of finding the answer and the best part is when you can say that there is only a 

single answer and if you say that then this is perhaps the most important problem the 

most important algorithm that you need to use and therefore, Grover’s algorithm 

although maybe not the most effective way of quantum computing, but it is also one of 

the most popular approaches of quantum computing. 

However the, I should mention that these 1994 work of Shor is a by far the most 

complete application of quantum computing and also is one of the most important basis 

of cryptography. Some of the applications today that is being already done in the defense 

labs is some of the countries around the world is due to the fact that this factorization to 

give raise to this extreme security is possible because of this particular principle of 

Shor’s algorithm which gives raise to exponential speedup. 
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Now the basic idea of qubit is that the case where the quantum system with exactly 2 

degrees of freedom. Now let me also point out that I am giving you the picture which is 

an evolved picture. In the 1980s people were not really concerned about just the 2 

degrees of freedom. When the first idea came and the ideas of superposition and 

entanglement became clear, people wanted to use many degrees of freedom, but soon it 



turned out that in order to maintain the language, which can be continuous between the 

computer scientist as well as the rest of the community developing this. This has a lot of 

people in this area. Your QC essentially is represented in one side by computer scientist, 

mathematicians and on the other side by mostly physicist and some very odd people who 

are interested in physics. For example, Setloit, he is a mechanical engineer.  

All of these different people, who have an inclination of physics understanding or 

interest in physics have also contributed hugely in this, but in order to make sure that the 

community understands each other quite well, more to say that the computer scientist are 

able to finally, able to use and make it or compare it with the classical computing. It was 

decided that the 2 degrees of freedom should be the benchmark because classical 

computers essentially still realize this based on that binary principle. We will be using 

the same principle to go between 0 and 1. I mention this right away here because that is a 

large and we will perhaps look at it in some point of the other. There is a large number of 

body of work which is also parallely developed into having multiple states or multiple 

degrees utilized for quantum computing very often those are known as qudits. 

Anything more than 2, when it goes is called qudit. That is a typical area of development 

which is also happened and people have shown that you could use qudits to do 

computing without any problem. It is like saying if you have is like having a decimal 

system verses a binary system and so on and so forth. You can have more than just to, 

just to clarify. Now once you say 2 degrees of freedom then there are some very common 

ones to look at 1 is say for example, the hydrogen atom ground in the excised state, these 

are the quantum states spin half system and that can be in electron, positron, a nuclei, any 

of these would work. 
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That is the situations. The state of the qubit is generally as we mentioned superposition 

of 2 basis states. 

Here the starting point is our basis states. That is coming from quantum mechanics. We 

have been looking at the basics of quantum mechanics before. We have all ready know 

that everything starts off with basis states and here we are basically confining ourselves 

to the 2 basis states that we start off with. The rest state and the excited state are the basis 

states of hydrogen atom for example, the rest or initially ground it can be anything. For 

example, again in the spin case the spin up and spin down are the states that a basis states 

of the spin half electron. 
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Now, based on these, you can have the vector picture, which we discussed, which is 

essentially the idea of Dirac and he used this bracket notation a essentially representing 

the arrow going one way verses the other and very effectively using this pictorial 

principles to develop the entire shorthand math associated with this entire process. The 

reason for the rap to develop this was, he was the first want to do the entire relativistic 

quantum mechanics and with the help of using relativistic quantum mechanics, he was 

able to for the first time, show the spin quantum number to appear and not adhoc, put in 

as was done in the non-relativistic scheme. 

Those of you who have done relativistic quantum mechanics, you already know what I 

am talking about. For relativistic quantum mechanics this was critical to be able to 

develop the ideas of shorthand notation. It was important to develop the shorthand 

notations to take care of the entire math that was going to go ahead with it. Simply put it 

is a much easier way of looking at the entire problem. There are certain notions that you 

go by doing this one is to say that the basis states for each qubit can be written as 0 and 1 

for instance and then each of them is associated with some probability or some amplitude 

factor and they can be all complex. For example, alpha and beta as long as they the 

square of them add up to 1, you are allowed to take any complex number for them. 

That is how you bring in quantum mechanics. At the very beginning whoever is entering 

this field, for them it is important to notice the main difference between the classical 



systems versus a quantum system. Even here in terms of writing out the linear way of 

writing everything out is the fact that we invoke complex numbers for the amplitudes 

and these numbers by themselves really have no physical understanding, no physical 

meaning. Only when you square them then they start having some meaning. 
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You get the feeling as to how probability is associated with the square and not just the 

amplitudes. We can use any kind of a basis sets. Instead of 0 and 1 we can use any other 

one as long as we can distinguish them. The basis states are typically are chosen in terms 

of orthogonal vectors. The reason being the inner product of the 2 vectors then are 

determined or are confirmed to be always 0, when you take orthogonal. This is always 

going to work. 
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You setup the problem this way. You could also use a plus minus notations for this and 

you can go from 1 basis set to the other. This is basis set transforms again something 

which you have done, quantum mechanically many times for simple cases, it is just a 

rotation. For instance here, we are showing an example of a 45 degree rotation from the 

original orthogonal states of 1 and 0 to plus and minus which are off by 45 degrees and 

you can just easily rotate 1 to get to the other. This is the qubit rotation in some sense. 

This itself, whenever you look at in an answer or situation like this, you are going to 

visualize what it means. Here is our first example of an operation. Why is it important? 

Because these are the operations that form the basis of how you are going to develop 

your computer? Just this very simple idea that you can actually rotate a basis set gives 

you the first principle idea of an operation in a quantum sense. 
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Now, when you have more than 1 qubit, then their internally arrangement gives raise to 

many more conditions. For instance, if we know the individuals states of electrons of a 

system given below. These are 3 electrons, let say they are individual representation on 

the basis of how they are, would give raise to the 3 different possibilities of representing 

them. I could always write my different way functions, psi 1, psi 2, psi 3 with amplitude 

factors in such a way that will give me raise to 3 different way functions. They can be as 

simple as 0 and 1 amplitudes which give raise to either one of the other state as it is 

being represented here or it could be much more complex. If we write it like this very 

simply and we ask the question what is the overall state of the 3 particle system then will 

be able to look at their composite products as their solution. 

And these composite products are tensor products, they are not anything else, but tensor 

products. This is again a definition here. The inner product was the term where we used 

the basis states to tell that they were orthogonal. 0 and 1, when they formed orthogonal 

set their inner product was 0, but when I actually taken outer product which is 

representing the final state of all these different qubits that I have taken, that is my outer 

product and this is my final state psi is essentially an outer product of all these 3 different 

states that I have which is a tensor product and that gives raise to the state and this is 

very different from the inner product. 



For any 2 states, if I take an inner product, that is not going to be the same as the outer 

product. If I want to write, if I take the phi and psi for instance, if I want to write this is 

my inner product as I have mentioned here, then the outer product will essentially be phi 

and psi. This is my representation which corresponds to that is what it means. The tensor 

products are written in this way I could also as well represent this psi 1, psi 2, psi 3, this 

is the shorthand notation which goes. Outer product, inner product and this is how they 

go. 
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Now, in this particular case where this was just set it up like this, we will finally find that 

my state psi, is going to be just represented by a state which is 1 0 1, which is a tensor 

product of the states corresponding to each of them. Now that is how you represent states 

next important thing which we would like to understand is the concept of gates. 
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The first thing we discussed was qubits, first thing is quantum mechanics and classical 

mechanics concept to computer, the very basics of it. These are how we built. Then we 

looked at what is the qubit, we defined qubits and we specifically mentioned the way we 

are going then we came to a point where we looked at the way the qubits are defined in 

terms of when you have multiple of them and then it is also looked at to say whether we 

are going to take in a products on outer products what does they mean? What do they 

mean? Inner products typically are projections, outer products are basically the final 

state, when you have multiple of them and that is what we looked at. 

Now, when we are going to see, what can you do with them, that is when we are going to 

do the quantum gates. Now it can be parallel to the idea of a classical gate. In terms of 

the classical computing a gate is an operation on a unit of data where in our particular 

case, it is a qubit in this particular case. A quantum gate is represented by a matrix that 

may be applied to a state vector. Now you can already see why it is a matrix because you 

are now looking at states which were being represented as vectors which are also 

essentially single order matrices. If you want to operate on them and change to another 

one, you need a matrix most of in this square matrices. 

Quantum gates are essentially often square matrices which can give raise to the vectors 

changing into the states that you would like. Now we will talk about this is more detail 

later, but for now let us look at some of the examples of commonly used gates. Now this 



is important case. Let us start with some of the gates here. One of them is called the 

Hadamard gate and they are represented by different notations unfortunately the 

Hadamard gate representation is H which is very close to a Hamiltonian. Therefore, 

please note for this class we will be using the Hamiltonian in the cursory manner. 

This will represent Hamiltonian because we are used to using Hamiltonian for generating 

energy whereas, for the Hadamard gate, we will be using the H, regular H, capital H, 

then there are these very important Pauli gates. What are these Pauli gates? I will come 

to them. The next one is the Pauli gate which is also very important and the first gate 

which is of consequence to an actual computing is the controlled NOT gate. We will go 

by them quickly to understand how these goes. 
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As an example for the classical case, this is a parallel that you are building the simplest 

Boolean gate is not. For the simplest case of a single qubit, what is it? We put in 1 case 

and we get out the opposite of them as a NOT gate whatever you put in the opposite 

comes out. If you go up, it will come out as down and so on and so forth. 0 1 goes in and 

you get a 1 0. Now one of the very important things to remember is that in quantum 

gates; however, you have defined it only, not only on the basis of the equivalents of 0 

and 1, but also on the basis of their superposition. 

Now, this is one very important point that you have to remember. Just by looking at the 

final outcome, which is the classical case you could have done or made your gates, but in 



quantum mechanics, that is not just the case. Every other possible superposition also 

coming from the same condition should also be following this rule. That is the idea. 
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Here is an example, you have a state 0 and you have state 1. If you want to define a NOT 

gate, what you want to do is you want to have say not operating on 0, it should give 1 

and not operating on 1, should give 0. That is what you expect. 

The action of quantum NOT gate on a superposition must then also have a situation 

where if I do this then it should work, which means that this very important point is 

going to be always maintained in case of quantum mechanics, there all the quantum 

operations are going to be linear. This linearity, now it should not come to you as a 

surprise because you know that when we did quantum mechanics or when we have been 

learning quantum mechanics, we have always mentioned the quantum mechanics is 

always going to work in a linear way. All the operations in quantum mechanics are 

linear. The allowed operations or the ones which you actually call are measurable 

operations always linear. Whenever you use a Hamiltonian, the Hamiltonian is linear. 

Whenever you use a momentum operator, the momentum operator is linear. The position 

operator is a linear. That is the point, that if it works for any particular set then all the 

superposition states also should be following that which means that a requirement of 

quantum operations are that they are going to be linear. 
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Now, how do you get that? This is the logic behind why do you have a matrix for a 

quantum gate. The logic being that the quantum operations have to be linear. We can 

represent the action of a quantum gate by a matrix. The quantum NOT gate or it is also 

known as the Pauli X gate is written by this form, the X is equal to a matrix is 0 1 0 1 0 

this 1.  
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Whenever you operate, here is a way; how it works the quantum state is represented by a 

vector. 0 is 1 0 whereas, 1 is 0 1 and the any psi which is a linear combination of this 2 

can be written in this form. 
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You can now express the not operation as on a generalized qubit, by using a matrix 

manipulation method and you will find that this always works. That is why your NOT 

operator X is working properly as a quantum gate and you can immediately see that NOT 

was a good one to take because NOT is one of the classical gates which is reversible. I 

specifically choose the one to start with which is the reversible one. It makes sense. 

Everything goes well. 
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Let us look at another important single qubit gates. This was a single qubit gate. We will 

just use 1 qubit. The other single qubit gates which are important, that was the Pauli X 

gate and this works on 1 qubit. The other common single qubit gates are the Pauli Z gate. 

The representation therefore, would then be in terms like similar to the way that, you 

write the classical ones. You will be writing out how they are Pauli Z gate is 0 1 0 0 

minus 1 then Pauli Y gate is a multiplication of the Z and the X and the Hadamard gate is 

an essentially a square root of the NOT gate. 

You can for your own; you can do these molecule excises to prove it to you that this is 

how they work. If you just apply Y, what does the Y look like? You should write it out 

similarly the Z is anyway given, but the fact that the Hadamard gate can be actually 

written in this form by taking a square root of not just simple exercise, you should just 

refresh your matrix manipulation by doing this X. 
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Now, the summary of the simple gates therefore are these X gates, basically the NOT 

gate alpha 1 0 converts to 1 beta 1 converts to 0, then the Y gate which basically is a 

complex conversion. Let us a part which takes you like this and then the Z gate gives you 

that finally, the Hadamard gate now this Hadamard gate is actually very important as we 

will find out later because what it is producing is a superposition of the 2 states. That is 

involved with the individual amplitudes. 

Basically your sort of equalizing the 2 states, I mean if I take my basis now to be 0 and 1, 

superposition of 0 and 1 anyone of them, then I will get a 50-50 combination of them. 

That is the reason why it becomes useful. Now the reversibility requirement is we have 

being doing that. 
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But now this is the point where we should look at it. Since all the quantum operations 

have to be reversible, we have this principle that our gates have to be designed in a 

particular way that they are always reversible. This is not true for the classical case and 

that is what is written in next line which is that, Boolean operations are not necessary 

reversible. A reversible operation is always given by a unitary matrix for which, all our 

quantum gates will be written will be possible to be written in terms of this kind of a 

unitary transforms. 

That is one other point, which we have. Any gate that we device will have a unitary 

transform. It will be possible to get this inversion very easily. Any operations that you 

have, you have its inverse available. That is the advantage of it. 
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Now let us look at the Hadamard gate because it is an important gate and as I said, it 

places it in a superposition of 1 and 0. This is the gate which takes 1 qubit and puts it in 

the superposition state of its own 2 states. 

This is important because you will find many practical uses of this Hadamard gate later 

on and this is the representation that you will in shorthand notation when you write 

circuits which is analogues to computer circuits, you will be having this kind of scenario 

where we will be feeding in the states and you will be having an output state like this 

with just the circuit diagram given like that. You should be able to interpret these kinds 

of simple circuit diagrams to you. That is one of the learning that we do in this because 

we will be soon going to cases where I will be simply showing you pictures like this and 

will not be writing down these other states. If I give you this then you should be 

immediately able to recognize that, this is how it is or if I just give you this, there should 

be able to understand how this is happening. This is important because this is the 

language that will be following for building up quantum circuits. 
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The Hadamard gate for instance, can give you very interesting results. With 0 as an 

input, you will be getting a superposition of the sum. With 1 you will get the 

superposition of the difference when you put in the superposition state in there, your 

actually get a superposition of the individual components with equal probabilities of 

theirs or another way of writing is this one where we are actually taking in some sense, 

this is the very important gate for basis transform. This is very important because in 

quantum mechanics, is all about taking the problem to a basis where it is easy. That is the 

reason why quantum mechanics is quantum computing is also going to take advantage of 

that and the design of a quantum algorithm or anything else that you can think of is 90 

percent relying on this idea as to how smoothly can you come up with ideas with which 

you can do your basis transform to a condition where it is the easiest to solve the 

problem. And then you come back to the state or the transform back to the case where 

you were, that you can get your result. That is the point of this entire place. Hadamard is 

almost 99.9 percent. You will always find a Hadamard gate existing in any computing 

you cannot avoid it because you always need to do basis transforms. That is one thing. 

Similarly, if you input this superposition you will get back 1. This is basically 

complement, you its shows that it is a completely reversible condition. If you believe in 

this, then you can immediately get the other and so on. 
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If you believe in this, then you can immediately get the other and so on so forth. The 

other important gate is the Pauli gate, once again it is important because the Pauli gate is 

in important for phase shift which means that the phase of the 2 states can be reversed for 

example, this is their 0 and 1 are in the same direction sum, but the reversal will make 1 

is plus and 1 is minus. This is the phase shift whereas; the sigma X is a bit flip. We 

started off by saying these were the Z X and Y gates, more formally in terms of the Pauli 

gates they are more known as the sigma Z sigma X and sigma Y and to complete the 

identity goes along with it. These are our final set of four sigma four Pauli gates and 

these are all very important in terms of anything to do with spin. 

That is the part, which is very important about these Pauli gates. One of them, you can 

see there is an understand the Z is only 1 dimension Z sigma Z that is only phase shift if 

you do a bit flip that is along the X axis if you do both phase shift and bit flip, which 

means that you are doing Y which is a composite of Z and X will find this and identity 

does not do anything, but this is necessary to complete the gate Z, that is what the Pauli 

gates are. 
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These are the corresponding Pauli matrices, they are also often written as 0 1 2 and 3 - 0 

is nothing but the identity, sigma 0 then, sigma 1 is the X, sigma 2 is the Y and sigma 3 

is the Z. I have given you all the different notations which are used in different books, 

each books uses different notation and to be clear I have put them all in this particular 

slides that there is no confusion wherever you see these you know these are the most 

popular single qubit gates. 

(Refer Slide Time: 45:45) 

 



Now, the final, the first gate which we will do, which is more than the single qubit gate is 

the control NOT gate. This is a 2 qubit gate. Why you need more than one in this case is 

because you need a bit for the control. It is more often known as this. This is our other bit 

requirements. The control NOT gate or the CNOT gate as is popularly known is the 

standard 2 qubit quantum gate and it is defined in this fashion when you are only 

operating on 0, 0 then it is just going to give back the same one because your control 

parameter essentially the 0. Whenever you have 0s, then it is leaving it. Your operation 

and the control essentially give raise to what is going to happen. 

The 1 flips the bit and the 0 is no change. That is your control the first bit is your control 

that is working on the other one to do the not right. That is why it is a control not. The 

state of the first if it is going to be 1 will give rise to a flip, if it is going to be 0 it will not 

let it will not make any changes. That is why, it is a control the first bit decides as to 

whether it will act like a NOT gate or NOT. That is why it is a control NOT. 
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It has a notation, this is its notation a plus with 0 inside the 0 there is a plus. It is a 

generalization of the XOR, classical XOR. If you, they call it X or XOR, whatever way 

you want to call it. The classical X or is essentially these where you have this principle 

and here you are using this 2 qubit case where the second 1 is, second bit is going to 

behave based on what the first bit is going to be. It is drawn in this fashion. This is also 

important to know because you would like to see. Basically the first bit remains as it is. 



Whether it is 0 or 1 remains as it is, the second one is going to change and depending on 

whether the control is going to do something or not, it is going to show off as a result 

that is how it is. 
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The first obviously, if it is a 2 qubit gate, then it has to be a 4 by 4 matrix because for the 

1 qubit gates we were using 2 by 2 matrices. This is a 2 qubit gate; this will be a 4 by 4 

matrix. The simplest matrix corresponding to the CNOT will therefore be this. Here you 

can see that, this is my CNOT gate and here is an example of applying the CNOT gate 

for a matrix which is y for a state, which is Y and you get the solution. Now these CNOT 

gates along with the single qubit gates are universal for quantum computer irrespective 

of how you formulate your problem. These will be always a complete closed set as you 

go and make bigger gates, they can often be broken down into these basic gates, but 

these gates cannot be broken down further. That is what is known that you know if you 

can go to the very basic state that is how they are. 



(Refer Slide Time: 50:26) 

 

How can you actually use them? The first important thing about the quantum computing 

is that once you have learnt your qubits and you have learnt some operations which are 

you gates, and then you can actually write out your circuits. We have been doing that, 

but here is a basic principle of how to go about doing something which is combination of 

more than 1 applied gate to get to where you want to. For example, we would like to just 

show a quantum swap circuit. I would like to go from A to B and B to A. The point is 

when you if you apply only 1 gate, it will be not possible to swap both is a CNOT will 

only swap one of them and the other one remains constant, but if you apply it twice then 

you end a producing a swap gate a quantum swap circuit. 

This is exactly an example of that. By using just control NOTs in series, you will be able 

to get this happen. You can actually start building your interesting circuits from these 

very basics that we have just learnt. So, this is a circuit. 
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Let see, here is the point that is being shown step by step. What does the first one do? 

First one generates a CNOT. You get this next one you have not applied anything on this 

part. It is only going to be the next and then the second one is going to be this, which is 

going to go to become B and then that one again remain same whereas, the other one 

finally, goes and applies this one to get back there. How many CNOTs did I use? 1 2 and 

then the third one; now if you tell somebody, who does classical computing will just look 

at and you say come on you know is a swap qubits, they equal swap qubits for that you 

have gone through 3 not givens 3 controls and 3 gates to do this, but one very important 

thing to note here; however, is that this is reversible. I can as well come from this side 

and I will have the same result that is not true when you do a classical computing. 

In classical computing, yes you can actually swap them just like that, but you are 

expending energy, you want to go the other way round is expending energy because it is 

not reversible. It is not the same way how it works. 
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That is the idea. That brings it to a very important point. What are the basic features that 

we are now looking for in a quantum circuit? We cannot do a few things that we have 

just now realized. No loops are allowed. Quantum circuits are acyclic, you know why? 

There are no loops which are allowed, quantum circuits are cyclic acyclic because you 

cannot paralyze loop circuits, even we when you do parallel prosing in a classical 

computer, the most difficult part is the nested loops. Generally speaking you are not 

really supposed to have nested loops if you have trying to do parallel prosing. 

For example, fan in you can understand that why fan-in is not allowed you are going to 

loose qubits, you cannot have that and similarly you cannot gain qubits, you cannot have 

fan-out. What we are going to do is that we are going to take on more from this point on 

into further lectures. For today let us stop here and we will continue on with this in the 

next lecture. 

Thank you. 


