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We have been looking at density matrices and its implications on the implementation of 

quantum computing that we have been looking at until the last several weeks. In this 

week we had based our studies from the beginning of density matrices this was prompted 

as I mentioned in the very beginning of the week by some questions raised by the 

students and as a result of that we have gone ahead to discuss the details of density 

matrix in relation to the measurements and the importance of it; now that we have come 

to the point where we have hopefully understood density matrices to a point that we can 

use it in a much more effective manner to these implementations and understandings that 

we have been carrying forward. 

Let us now look at the general quantum operations, which include Decoherence, partial 

traces and measurements based on density matrices. 

(Refer Slide Time: 01:15) 

 

So, the general quantum operations are also completely positive trace preserving maps or 

admissible operations, as a result we basically choose several matrices that satisfy the 



condition. Let us consider matrices A 1 through A 1 M, which follow the condition as 

provided here that I is the identity matrix A j t is the transpose of A j then the mapping of 

the density matrix to this set of matrices can be such that it becomes a general quantum 

operator. So, the mapping in terms of the density matrix written in terms of these 

matrices that we just defined can be written in terms of this general quantum operator. 

So, for example a unitary operator applying U to rho, we already know gives rise to this 

result rho U dagger. 

(Refer Slide Time: 02:29) 

 

Let us take the example of Decoherence; let us consider A 0 matrix which is an outer 

product of 0 states and A 1 matrix which is a outer product of 1 states; this quantum 

operation maps rho into this form and now if we take a state vector psi which is having 

super position of 0 and 1 with alpha and beta coefficients, then this mapping would 

essentially result in alpha squared and beta squared formation in this map, this would 

correspond to measuring rho without looking at the outcome. After looking at the 

outcome rho would become 0 0 outer product with probability alpha squared and 1 1 

with probability outer product with probability beta square. 
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Another example is the trine state we had done this state in one of our example problems 

maybe home assignments, where we have these states which are given in terms of 0 and 

linear combinations of 0 and 1 in certain order; if we define a naught as two-thirds 

square root outer product of phi naughts, which will give rise to this matrix whereas, A 1 

has two-third of outer product of phi 1 and A 2 has two-third outer product of phi 2 then 

we will be getting each of them in such a way so that their transfer products and their 

sums are equal to identity which means that our condition is satisfied. So, we can apply 

the general quantum mapping operator, which is that sum of this is going to give rise to 

this operation that we mention. 

The probability of the state psi k results in an outcome state A k which is two-third; this 

can be adapted to actually yield the value of k with this success probability. So, that is 

the reason why this particular principle that we can have the general quantum mapping 

operation work is very important because once this condition is satisfied, we apply the 

quantum of mapping operator we can make a measurement with probabilities that can be 

the outcome of the state with the exact values that we are interested in terms of the state. 

So, that is the reason why this is a very important measurement principle. 
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Another generalized quantum operation advantage is the partial trace which discards the 

second of the 2 qubits and this could be the example which is of the kind where we 

discuss. Here if we take a matrix A naught, which is an identity times the tensor product 

to the bra of state 0 then we construct matrix of the form this and the other 1 of the form 

this and we apply the general quantum mapping operator as we have discussed before 

and then the state becomes rho tensor product of sigma gives rise to the state which will 

become this particular form half 1 along the diagonals is the same density matrix for 0 

with half probability and state 1 with half probability. 

It is the operation is the partial trace of rho. So, what we have essentially done is 

basically we have looked at a way of looking at the partial trace of an operation, and that 

is an important operation that is often used. So, this is almost like we are discarding the 

second of the 2 qubits and that is why it is trace 2 rho considering that as unity and we 

get the other part which is a solution. 
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So, we are interested in distinguishing mixed states, we have mentioned before that 

several mixed states can have the same density matrix which we cannot distinguish. So, 

how to distinguish by 2 different density matrices? So, one of the options is to try to find 

an orthonormal basis phi naught phi 1 in which both density matrices are diagonal. 
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The best distinguishing strategy between these 2 mixed states is to go with a rotation 

about the state. So let us consider a state 0 with probability half and super position of 0 

and 1 with probability half giving rise to rho 1 which is given here and another wave 



function, another is mixed state with state 0 with probability half and state 1 with 

probability half giving rise to a density matrix rho 2 of this kind; rho 1 can also arise 

from other orthogonal mixture where rho phi 0 and phi 1 have probabilities of cosine 

theta, rho 1 can also arise from this orthogonal mixture where the states are in phi 1 and 

phi 0 with probabilities cosine squared pi over 8 and sine squared pi over 8, which is 

essentially in the rotated condition. 

Similarly, rho 2 can arise with probabilities half when they are in other states. 
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So, if we can effectively find an orthonormal basis rho 1 and rho 2 that are 

simultaneously diagonalizable, then we can get the solution. So, rotating phi naught phi 1 

to 0 and 1 the scenario can now be examined using classical probability theory, you can 

distinguish between 2 classical coins whose probabilities heads are cosine square pi over 

8 and half respectively. So, rotating phi naught and phi 1 to 0 and 1 the scenario can now 

be examined by using classical probability theory. 
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So, the rotation actually allows us to go from one state to the other. So, we can 

distinguish between the 2 classical coins whose probabilities whose heads are now, 

cosines squared pi over 8 and half respectively and possible as we have found the 

orthonormal basis, where both the density matrices are diagonal. Now the question is 

what do we do if we are not so, lucky to get 2 density matrices that are simultaneously 

diagnosable? 

(Refer Slide Time: 10:28) 

 



We should recheck the basic properties of the trace as we have done once before the 

trace of a square matrix is defined as we mentioned trace of the matrix which is the sum 

of the diagonal terms, it is easy to check that the trace of 2 matrices are essentially the 

trace of individual matrices summed together and the product of the trace of 2 matrices is 

cumulative, which means trace of M N is equal to trace of N M the second property 

implies; however, that the trace of M would be equivalent to the trace of the unitary 

transform of M, which means that its essentially looking at the sum of all the eigen 

values or the diagonals. 

So, the calculation maneuvers which are worth remembering are the fact that the outer 

product of the trace a and b with a matrix M, would give rise to the expectation value of 

M and trace of outer product of a b and c d is equivalent to getting the expectation value 

of is equivalent to writing out outer product of b c times that of d a; trace of this a b outer 

product of a b and c d it give rise to inner dot product of b c and d a together. We can all 

we should also keep in mind that in general trace of M of N is not equal to the trace of M 

and trace of [noise], that is not quite generally true you cannot make the trace apply on 

individually, although they are commutative in terms of the product of the matrices. 

(Refer Slide Time: 12:52) 

 

So, the idea of partial trace that I mentioned before can be looked at now, how do we 

compute the probabilities for a partial system for example, we have 2 states X and Y 

with a probability of xy, which is with all their sums then if we look at the probability of 



one of them with respect to the rest then that is the partial measurement of one with 

respect to the other. So, this is the form that we are looking at this is the partial 

measurement where the term which gives rise to the part, which is correlated to only the 

part summing over all the y is giving rise to the partial measurement for that. 

(Refer Slide Time: 13:52) 

 

So, if the second system is taken away and never again directly or indirectly interacting 

with the first system, then we can treat the first system as the following mixture. 

For example we wrote the earlier slide; in the earlier slide we came up with this term, 

this will be equivalent to the rho trace of 2, when we are considering that sum over all 

the ys are taking care of all the y component or the second component of this mixture. 

So, that is why it is the trace 2 (Refer Time: 14:38).  
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So, in terms of partial trace we derive an important formula to use; which means that we 

have rho 2 which is the trace 2 of rho is basically sum over all the ys for the particular 

probability of P of y with the outer product of the psi’s, where the psi y is written in 

terms of all the sum of the x vector. 
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The probability of measuring for example, w in the first register depends only on trace 

rho now. So, the sum over all the probabilities of w y would be given by probability of y 

summed over with the weightage factor w y with respect to root P y square give rise to 



this particular set where we get the trace of the measuring the outer product w times the 

trace of rho 2. 
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So, the partial trace can therefore, be calculated in an arbitrary basis it does not matter in 

which orthonormal basis we traced out the second system for example, if we have alpha 

0 0 and beta 1 1, and we do the trace out of the second system, then we are left with 

alpha squared outer product of 0; beta square outer product of 1 in the same; however, in 

a different basis you can write this in terms of alpha 0 0 beta 1 1 as in a different basis 

alpha 0 beta 1 and root 1 over root 2 0 and 1 for both and with the with another one 

which is in this different basis. 
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Now, if we do a partial trace can be calculated on a arbitrary basis then the trace 2 will 

finally, again give rise to alpha squared outer product of zeros and beta square outer 

product of one and that is exactly the same as the earlier one. So, what it means is the 

partial trace is invariant to the orthonormal basis that we choose and that is actually a 

very important statement is that is the way how the properties of the system can be 

determined without problem. 

(Refer Slide Time: 17:55) 

 



Now, methods to calculate partial trace; partial trace is a liner map that takes bipartite 

states to a single system states. So, what we have essentially done is we have taken a 

mixture of 2 states into a single system state by tracing out one of them and that is 

through a linear mapping as we just did. We can also trace out the first system if 

necessary is the choice how we like to do this, we can compute the partial trace directly 

from the density matrix description it is another important part of this exercise. 

(Refer Slide Time: 18:52) 

 

So, partial trace using matrices tracing out the second system would be of this kind 

where you can set up the traces by individual parts and then we can write it out in these 

kinds of forms. 
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So, here are some examples on partial traces: 2 quantum resisters example 2 qubits are in 

states sigma and mu respectively are independent if they can be come if the combined 

system is in the state, rho which is a tensor product of the two. In such circumstances if 

the second register say is discarded then the state of the first register remains in sigma. In 

general the state of a 2 register system may not be of the form sigma tensor product with 

mu, it may contain entanglement or correlations; we can define the partial trace 2 rho as 

the unique linear operator satisfying the identity at trace 2 sigma tensor product mu is 

equal to mu the second the index 2 here essentially means that the second system is 

being traced out second system is mu. 

So, for example, it turns out that trace 2 of this particular form that we have written here 

is half 1 1 diagonal element, it turns out that if we take this particular set of sigma and 

mu then we get a result which is of this kind is the half. 
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We have already seen this defined in the case of 2 qubit systems discarding the second of 

the 2 qubits, let a equal to I times the tensor product of bra 0 state then we have this and 

A 1 is the tensor product of I times 1, for the resulting quantum operation state which is 

the tensor product of these 2 becomes sigma. For d dimensional registers the operators 

are A k times I tensor product of bra phi k, where phi naught phi 1 all the way up to phi d 

minus 1 are an orthonormal basis. As we saw in the last slide partial trace is a matrix 

how to calculate this matrix of partial trace? 

(Refer Slide Time: 21:24) 

 



So, calculating matrices of partial trace is for 2 qubit system the partial trace is explicitly 

given in terms of the traces of each individual parts which add up as we had shown 

before and we trace them out and we get this and as a result we can sum them up as we 

show here into these individual traces and we can write them out in this form. 
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The unitary transformation do not change the local density matrix that is a very 

important property, a unitary transformation on the system that is traced out does not 

have an effect on the result of the partial trace, which means that if we take a system 

which is sort of defined in this form and we take the partial trace over 2 the second 

system, then the unitary transform in the process does not affect the state. 
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The state also distant transformations do not change the local density matrix also. In fact, 

any legal quantum transformation on the traced out system including measurement 

without communicating back to the answer does not affect the partial trace also. So, here 

is the meaning of that that if we mention it in this format then the partial trace will 

remain the way it is. 

(Refer Slide Time: 23:02) 

 

Now, these are because of the fact that operations on the second system should not affect 

the statistics of any outcomes of the measurement of the first system, otherwise the parity 



of the control of the second system would instantaneously communicate information to 

controlling the first system, which would be violation of information control and that is 

why individual operations that we showed until now essentially has no effect on the 

other operations as we were discussing. 
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Principle of these implicit measurements lie on the fact that, if some qubits are in a 

computation are never used again, you can assume if you would like that they have been 

measured and the result ignored, the reduced density matrix of the remaining qubits is 

the same. 

So, these are the very important aspects of implementation that we have already used 

while we were doing the different operations that we looked at in the earlier weeks and 

so these measurements are ratified in terms of the density matrices and their 

developments and their behaviors as we are discussing here. 
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One of the most important measurement aspects which we have utilized all the time is 

the positive operator valued measurements POVM. If we had matrices which satisfy the 

form that the adjoined of that products of the adjoineds are identity, then the 

corresponding positive operator valued measurement POVM is a stochastic operation on 

density matrix that with probability produces the outcome which is the trace of the 

matrix and its products with the density matrix and its. So, basically the trace of the 

observable of the particular matrix and so it leads to the classical information and the 

collapsed state is the one where it is the product of the jth matrix with the density matrix 

and its dagger normalize with respect to its states. 
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So, for example, if we have A of j which is an outer matrix, outer dot product of phi j 

which orthonormal projectors this reduces to our previously defined measurements; 

when A of j is phi of j is outer product are orthonormal projectors and rho is the outer 

product of psi's then the trace would be the probability of the outcome which has been 

show here. 

And similarly the collapsed state would essentially be the state phi j outer product and 

that is the collapsed quantum state as expected; because we are basically finding the 

projection of the collapsed quantum state and its probability. So, this is the reason why 

this particular line of development is very essential because this is essentially connected 

to measurements. 
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The measurement postulate formulated in terms of observables are exactly in the form 

that we have been discussing, now our form a measurement is described by a complete 

set of projectors P of j onto the orthogonal subspace, the outcome j occurs with 

probability, probability of j which is the inner product of psi with respect to P of j, the 

corresponding post measurement state is projector of the state with respect to its. 
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So, this is the projector matrix that we have been discussing earlier, the measurement is 

described by a complete set of projectors P of j onto the orthogonal subspace, the 



outcome j occurs with probability j which is given as this form, the corresponding post 

measurement stat is of this form. The old form of measurement which was being 

discussed is the measurement is described by an observable, a Haitian operator M with 

spectral decomposition M which is equivalent to the sum of the diagonal element times 

the projector. 

The possible measurement outcomes correspond to the Eigen value lambda j and the 

outcome lambda j occurs with probability of lambda j psi p of j psi. The corresponding 

post measurement state is essentially the same. So, either we look at it in the hermitian 

operator principle state by using Eigen state properties and Eigen values or in the 

projector way of looking at it, they both essentially give rise to the same result as is 

expected either from the density matrix formalism or from the Schrödinger’s formalism 

of solving a Schrodinger’s equation. 
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So, in terms of quantum mechanics that we have been utilizing for making the quantum 

computers and information quantum information, computer science can inspire 

fundamental questions about some of these we can take a informatics approach to 

physics, compare the physical approaches to information, what measurements can be 

performed in quantum mechanics that are of interest. 
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Traditional approaches to quantum measurements is a quantum measurement is 

described by an observable M. M is a hermitian operator acting on the state space of the 

system, measuring a system prepared in an eigen state of M gives the corresponding 

eigenvalue of M as the measurement outcome. 

The question now present itself can every observable be measured; the answer 

theoretically is yes, in practice it may be very awkward or perhaps even beyond the 

ingenuity of the experimenter to devise an apparatus which could measure some 

particular observable, but the theory allows one to imagine that the measurement could 

be made. Now this is a statement made long back by Dirac essentially understanding, 

essentially pointing out the importance of the concept of measurement and to the real 

measurement aspect. 
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So, one of the most important work in this area has been the Von Neumann measurement 

aspect that is because that has been related to the idea of entropy and all the states put 

together, so in that respect if we have a universal set of quantum gates and the ability to 

measure each qubit on the basis 0 1, if you measure say phi state, we get b with 

probability alpha b squared as it is expected. 

(Refer Slide Time: 31:00) 

 

We have the projection operators p naught, which is the outer product of state 0 and p 1 

which is the outer product of state one satisfying the sum total is one, we consider that 



the projector operator or observable to be M which could be written in these terms and 

we note that 0 and 1 are the eigenvalues. When we measure these observable M, the 

probability of getting the eigenvalue b is probability b is equivalent to psi bra times, the 

probability of b is essentially given by this form in is called quantum mechanics and we 

get it equivalent to the alpha b mod square and we are in that case left with the state 

which is the P of b times psi over the probability of the process. So, essentially we are 

left in the state which is given by b. 

(Refer Slide Time: 32:01) 

 

The expected value of an observable therefore, can be associated; if we associate with 

the outcome b the eigenvalue b, then the expected outcome is given by this summation 

which can be then related to the trace of the matrix and the outer product of the phi as 

been done before and the Von Neumann measurements can therefore, give us a universal 

set of. 
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Suppose we have a universal set of quantum gates and the ability to measure each qubit 

in the basis 0 1, say we have the state alpha x X where x goes anywhere x is an element 

of 0 and 1 if you measure all n qubits, then we obtain the state x with probability alpha x 

mod square; we have to notice that this means that our probability of measuring a 0 state 

in the first qubit equals sum of alpha x mod square for all the values of x or n bits. 
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If we measure only the first qubit and leave this rest alone, then we still get 0 with 

probability of the state 0 with probability P 0, which is a sum of all this states the 



remaining n minus 1 bits, the remaining n minus qubits are then in the renormalized 

state. 
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The most general measurements of these kinds can be looked at using a simple circuit, 

where there is a unitary operator which has the inputs coming from the states and then 

one of them is making the measurement. 
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This partial measurement corresponds to measuring the observable M which is of this 

form. 
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And a Von Neumann measurement is of a type of projective measurements given an 

orthonormal basis if we can perform a Von Neumann measurement with respect to phi k 

of the state with respect to psi of the state phi, which is given as alpha k psi then we 

measure psi with probability alpha k squared mod squared over this and that can be 

written in terms of the trace of the entire process. 
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For example; if you consider Von Neumann measurement of the state phi with 0 1 with 

alpha beta probabilities with respect to the orthonormal basis, which is super position of 



0 and 1 plus and minus we note that we get phi in the basis as which can be transformed 

to writ write in this form, we therefore get 0 1 1 root 2 in that basis, the probability of 

alpha plus beta whole squared over 2 and this is an exercise which we had looked at 

earlier in one of the examples that we had done in earlier lectures. 
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So, we note that this projective cases can be measured in this form and here is just the 

way of showing how this can be measured here is the little math, which you might have 

done as a result of the problem that I had given you in your one of the exercises. 

(Refer Slide Time: 36:19) 

 



So, I think the last point we would like to point out is how do we implement Von 

Neumann measurements, which is what we have essentially done when we were doing 

all our quantum computing implementations. If we have access to a universal setup of 

gates and bit-wise measurements in the computational basis, we can implement Von 

Neumann measurements with respect to an arbitrary orthonormal basis psi k as follows. 
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We can construct a quantum network that implements a unitary operation psi operating 

on psi k to give rise to a k ket vector, and then conjugate the measurement operation with 

the operation U which is a unitary operation. So, I will get a probability of alpha k mod 

square. 
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Another approach would be to have the circuit that we had shown in partial earlier to 

have both the inputs in 1 sen have the entangled state come in and have a final 

measurement of this type, both of them will have probabilities of alphas k and these 2 

approaches will be discussed in terms. 
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So, both of them have the same probability of alpha k squared. So, these approaches can 

be immediately connected to the bells inequality and the bless states that we have, it is 



one of the cases where we are able to connect these to the studies that we have done 

earlier in terms of entanglement and measurement of teleportation and states like that. 

So, in the next slide if you just observe that when we take the orthonormal basis 

consisting of the bell states and we apply the same formalism that we have been 

discussing, we have discussed bell basis lectures and other things in the earlier lectures. 
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We can have destructive and non destructive measurements and we will finally, end up 

getting the results that will give rise to in this terminology that we have developed or 

discussed in this entire week about density matrices.  
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Tracing of partial nature which will give rise to the most general nature of results and 

this would give rise to the general cooperate quantum operation that can be 

simultaneously be used by applying a unitary operator of larger quantum system, which 

helps us in terms of discarding the parts which can give rise to difficulties in terms of the 

Decoherence and yet we can get to the results that we are interested in and get the right 

solutions and so this is a much more powerful way of generalized process, where density 

matrices can play a major role. 
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Another very important aspect is the POVM measurements which we introduced here, 

any POVM can also be simulated by applying unitary operation on a larger quantum 

system and then measuring it and whatever we get results which have their difficulties 

can be coupled with the classical inputs which are not going to be utilized and we can 

keep the preserve the quantum nature of the story by this fashion. 
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Any bipartite system for instance what we have done can be looked at in the manner that 

we have discussed, if they are separable then their probabilities are going to be such that 

we will be having a probabilistic mixture of the probabilities of the product state as we 

present it here. 

How the nature of quantum computing goes we have looked at entanglement, where the 

last part that we just discussed the separability and others, in terms of density matrices 

have been very importantly looked at earlier and we were able to know which are the 

states which can be separable and which are which cannot be separable that are the 

entangled states or the for example, bell states and so we have looked into all these 

aspects and in this week we basically presented it in terms of density matrices, because 

that is one of the most important ways of looking at all the realistic quantum problems 

that we have looked at in terms of implementations, because the way the realistic 

measurements goes the aspects of Decoherence and other issues are inherently present 

and they need to incorporate density matrices to be able to address that. 



So, I hope it has been a good learning experience and bridging the gap of the parts which 

we had earlier not looked into in detail. So, I thank the students who had prompted me to 

go back to the section and revise it. In the last week which will be upcoming we will be 

doing a summary and revision of all the aspects that we have looked into are covered in 

this course and I suppose it will take quite a bit of time or hours, but I have left sufficient 

time for the final week to cover almost all the discussions at least in summary for all the 

implementations of quantum computing that we have been doing until now. And we will 

also look into all the problem sets that we have been giving you as exercises at that last 

final lecture to make sure that everything is complete as far as the course goes. 

Thank you, see you next week. 


