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Concept of Density Matrix for Quantum Computing 

 

We are coming towards the end of this series of lectures for this course. We have already 

covered ten weeks of learning about quantum computing and its implementations and in 

the last week, we were going over some of the basics to make sure that we understand 

the concept of implementation again based on some of the basics. And as we have been 

interacting more and more with the students, we have also come to know that there are 

certain aspects which would help if we relook at them a little bit more. One of the key 

elements of that happens to be density matrices and density operators. 

So, we start this week’s lecture with this concept of density matrices and density 

operators. We have introduced this earlier and mentioned certain aspects a bit in relation 

mainly with respect to NMR and here we will be doing a little bit more understanding a 

bi so that the missing elements or the implementation parts that we used density matrices 

implicitly can become clearer. 

(Refer Slide Time: 01:20) 

 

So, when we talk about density matrix; a quote comes to mind that again is related to 

Richard Feynman where he made this statement that when we solve a quantum 



mechanical problem, what we really do is divide the universe into two parts; the system 

in which we are interested and the rest of the universe. So, this was quoted from his 

statistical mechanics lectures back in 1972; essentially stating that whenever we are 

going to talk about density matrices, we are going to discuss about the statistics and the 

collective aspect of the part. 

When we include the part of the universe outside the system, the motivation of using the 

density matrices becomes clear. So, that is the basic idea that whenever we are going to 

include the part of the universe outside the system alone, then the motivation of using 

density matrices becomes very clear. And actually this is very pertinent to quantum 

computing as we will discuss here. So, essentially let us look at what these mean. 
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So most cases density matrices and density operators are used reversibly and often are 

used in one and the same way for both the cases. So, in general the statement that was 

made in the last slide is sort of more clearer in this term of Venn diagram, where we have 

an ensemble of the states that we are talking about with some probability for each of the 

states and that essentially forms the quantum system and that interaction of the quantum 

subsystem, as a result of probabilities and their interactions is the fundamental point of 

view that we are taking. 
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So, let us see what we will be mostly doing in this lecture and why we are doing it. Most 

of this lecture will be spent on mastering density matrices and the density matrix and so 

we would need to master a rather complex formalism in some sense and that is the 

reason why I thought I will go back on this now, where it has become an important point 

to understand.  

Might seem a little strange since the density matrix is never essential for calculations, it 

is a mathematical tool introduced for convenience and in our particular case the 

convenience meant that we were more inclined to use it for implementation aspects. And 

mostly we have to bother with it as already we know because we have gone through the 

implementation processes. But let me actually point it out again, that the density matrices 

although it seems to be very deep abstraction, but once you have mastered the formalism 

it becomes far easier to understand many other things including the concepts of quantum 

entanglement and quantum communication; which we have already gone through before.  

So, that is the reason why we are relooking it and that is the reason why I had initially 

introduced it but never really gone deeper into it. But before closing our entire series of 

concepts on quantum computing, I thought we need to really look at it once more. 



(Refer Slide Time: 04:40) 

 

So, mathematically if we consider says phi i and theta i to be the complete set of vectors 

in vector space describing the system. So, mathematically let phi i be a complete set of 

vectors in the vector space describing the system and theta i be a complete for the rest of 

the universe. The most general way to write the wave function for the total system is 

generally written in this form, where both phi i and phi theta j are composing the total 

system. 

Now, let A be an operator which acts only on the system that is A does not act on theta i, 

then what will happen is the operator A acting on the system would give rise to a result 

which would be given by this form of equation. So, when we apply this then we will 

have the observable; would be having the form as given in this equation where in we will 

find that this particular part can be represented in terms of the density matrix as we call it 

and that is the definition in how we start discussing about it. 

So, once again we have the vector space describing the system by phi i and the complete 

set of the rest of the universe as theta i, then the most general way to write the wave 

function of the total system is a composite of the 2 psi then we use an operator which 

acts only on the system, which is how most of the operators that we choose, work and 

then what we find is that we will be having a situation where if we find its expectation 

value for the wave function, it will end up producing result; where we will be having the 

resultant coming from the part where the system is being interacted by the operator 



resulting in a part corresponding to this kind which is the density matrix that we are 

looking at. 
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So, we basically have defined the operator rho to be such that; it is going to be having a 

form of this kind with the understanding that rho is going to be Hermitian. So, once we 

look at this one again where we have defined this part, then we get doing a little bit of 

math as we show here that the trace of the operator on the density matrix will give rise to 

the expectation value of the operator that we were looking at. 

So, due to the Hermitian nature of rho it can be diagnosed with a complete orthonormal 

set of eigenvectors with real Eigen values wi, so that the final density matrix would look 

like this rho. 
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So, we have essentially stated that the expectation value would be the trace of operator A 

with rho and rho which is our density matrix will be of this form and if we let our 

operator to be just identity then what we will get is the sum of all the eigen functions 

would be equal to just the expectation value, in this case it would be 1 because it is the 

we have taken the operator to be 1 unity. 

And if we let A to be of this form then we will have the eigen functions to follow as a 

result of this trace application a form which would be of this kind which means that our 

eigen functions are going to be either equal or greater than 0 and the sum total of each of 

the eigen values would be equal to 1. So, it is an orthonormal set of eigenvectors and real 

Eigenvalues are the solutions which are with respect to the density matrix that we have 

defined rho. 

So, that is the first criteria that we have to understand that the density matrix would 

always give us orthonormal set of eigenvectors and real eigenvalues. So, that is what we 

are getting. 
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Any system that is described by density matrix rho, where rho is of the form that we 

have just now defined summation all over i for the eigen function w i with for the bracket 

notation that we have used, the set ket i is a complete orthonormal set of vectors. So, 

these are the rules that we finally, get out as the result of this mathematical 

understanding. 

And given an operator, the expectation value of A is given by trace of rho of A and we 

also notice that this can be rewritten in this format which gives rise to the fact that w i is 

a probability that the system is in state i if all, but one w i are 0 then we say that the 

system is in a pure state, otherwise it is in a mixed state. 

So, this definition allows us to find out that the probability of the system and its 

weightage factor and if it is only one state as we have just discussed that w i is the 

probability if it if all, but one is 0, then that particular state is the only one which 

represents the state and therefore, it is a pure state otherwise it is in a mixed state; that is 

the basic idea. 
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So, in that sense density matrices of pure states are then represented as in terms of the 

vectors that we are doing the ket vectors psi and all such states are called pure states. An 

alternative way of representing quantum state in terms of density matrix therefore, are 

the way that we have just introduced and it is also as I mentioned reversibly used with 

the term density operators. So, the density matrix of a pure state is the matrix written in 

this form which as its summation can be written in terms of the weightage factor for the 

states which are composing the psi state. This is a particular way of representing density 

matrix, which we will get into more in detail. 

Now, as an example the density matrix of say alpha 0 plus beta 1 can be written simply 

in this terms and which will then be the coefficient squares along the diagonals and their 

products along the off diagonals. So, the summation part of the statement that we have 

shown at the very beginning can also be summarized in the matrix notation as we shown 

here. 
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For a pure state for example, we have conditions where we can have wave function 

which is a composition of 1 over root 2 normalization factor; upward spin and downward 

spin. If we take this wave function then the density matrix can be written in this form and 

we find that the square of the density matrix is equal to itself and its trace is equal to 1; 

trace is by the way the sum of the diagonals. 

If we consider a mixed state of 50 percent upward spin and 50 percent downward spin, 

then we have a case which looks like this and in this case the matrices will turn out to be 

in this fashion such that the final result of the density matrix will come out as this and in 

this case the rho’s square is not equal to rho although, the trace rho is equal to 1 as 

before. 
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Again if you take a 50-50 mixture of ket psi as we had shown before of spin going one 

direction versus the other direction and another wave function get phi as 1 over root 2 

spin going up versus spin going down and the negative sign between them. Then if we 

look at the density matrix, we once again find it comes out to be a density matrix as 

given in the last case which is a mixed case and we find that rho square is going to be not 

equal to rho again and the trace is again going to be equal. 

So, now the diagonal elements are always equal to 1 essentially that is a reflection of the 

fact that this diagonal elements are essentially giving the populations of the state, so the 

total population irrespective of how we look at it which is the trace is always going to be 

1 and the off diagonal elements are the ones which will indicate something else and as 

we come to this is known as the coherence; how much they are correlated to each other, 

the correlation between these states because they are essentially corresponding to the 

coefficients of the two different states and their complex conjugate product and 

therefore, when they have some correlations then that will represent the coherence of the 

states. 

It is important to note that in both the cases, we describe a system which we know 

nothing about is total of total ignorance because what we have done is we have put 

mixed states in case of the second and the third case whereas, in the first case where it 

was a pure state, where rho square in the first case; this was a case where we only had 



one state to look at is. So, opposition state, but it is essentially one state of spin going up 

or down, but this is a state which is a pure state. 

However in the cases where we looked at later on, they were all mixed states and 

therefore, we know nothing about those states. It is a state of total ignorance and that is 

why it is important to get into the concepts of density matrices because for pure states it 

perhaps would not matter much as to what we talk about their properties and things like 

that, but for mixed states; the difficulty is that we cannot really come up with a way as to 

how to understand them. So, density matrices are ways where we can get to know about 

mixed states first of all identify them because whenever we find that the rho is equal to 

rho square, which we saw in density matrix; we know that it is a pure state whereas, 

whenever it is rho not equal to rho square, then we know that it is a mixed state and so 

that gives us some indication as to how to look at these states. 
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Now, in the case of a matrix which we have been using a lot; I just wanted to say just 

keep the clarification as I mentioned before it is the sum of the diagonal elements which 

for example, in this case has been identified as the diagonal elements and it has some 

interesting properties which is that its associative, it has; so A times B and B times A; all 

these laws for multiplication, addition these things work and also the unitary laws work 

with this. So, unitary operator acting on the state inside the trace would make it remain 



the same and the trace of a matrix essentially can also be represented as the expectation 

value of the wave function as long as this is an orthonormal basis phi i for instance. 
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So, in terms of notation of density matrices and traces this is how we go about doing it. 

We generally represent as we have been saying the ket wave function as a super position 

of two other states with their coefficients and we can have them written as we have 

shown here that these coefficients are nothing, but which can be written in these terms 

because they are orthonormal sets. So, the probability of getting 0 when measuring this 

can be found out by using this kind of a mathematical form and what we find is that in 

this form also when we arrive at; we get that the density matrix is the form that we are 

get arriving at where we are getting that the density matrix is what we are using when we 

use the trace. 

So, whenever we are going to make a measurement of a particular state that is where the 

density matrix appears. We have; this is a definition which we had already used that the 

probability of a particular measure is always the square of the coefficient and that is what 

we are utilizing and we can always find that in order to get the value of that, we can 

always use the density matrix and that is one of the ways of saying that the density 

matrix would automatically help us in finding the probability of the or the contribution of 

a particular state to the composite state. 
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So, the Eigenstates of density matrices form complete basis for subsystem block that we 

have already seen. The Eigenvalues give the weight of the state that is what we had 

discussed earlier and we can keep the m Eigenstates corresponding to the m highest 

Eigenvalues; m is just the running number here, running digit. Eigenstates of the whole 

system can thus be given by for instance the wave function which is equivalent to the 

root, since the weightage factors or the weightage of the state are essentially the 

probability; the amplitude of it would then be square root of this weightage, times the 

individual states that they are made of and this is the famous Schmidt decomposition that 

has been sometimes eluded to when we were doing our steps or processes in quantum 

computing or quantum information processing. 

This is an optimal approximation; however, because we are making a statement that we 

understand that they can be made to be decomposed in this kind of a state. In case of 

entangled states, the mutual quantum information is carried in terms of the entropy of the 

state which is often written in terms of the way how entropy is often defined and since 

trace allows the logarithm to go through this kind of a process. So, we can this is the 

property of the trace that we looked at earlier. So, we can instead write the trace as in this 

form minus rho log; rho and this will be equivalent to the weightage factor terms the log 

of that. 



So, density matrix can be defined for pure coherence to a position of statistical average 

states and so it is a very powerful approach. Whereas, in case of looking at the state 

alone; it might often be difficult to find out what to do with them. So, the idea that these 

kinds of definitions work for all the cases whether it is pure, whether it is having a 

coherence super position or whether they are a statistical average of many states, it gives 

us the advantage of using the density matrix formalism. 
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Now, when we have the concept of pure states, it is much easier to understand because as 

we said that they basically represent one particular state; however, when we have 

mixture of pure states, the state is described by a state vector and is called a pure state. If 

we have a qubit which is known to be in pure state psi 1 let us say with probability p 1 

and in psi 2 with probability p 2; what will happen. So, that is the question to ask when 

we have a state which is described by a state vector, but can be in the mixture of pure 

states. 

So more generally we considered the probabilistic picture of pure states called mixed 

states, which is then given in terms of the overall wave function psi, which is now going 

to have the probability of each wave function in terms of the particular composition. So, 

for example; psi 1 with probability p 1 psi 2 with probability p 2 and so on and so forth. 
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So, we have these contributions which make up the final mixed state which is the psi 

state. So, that density matrix of this mixed state would be having a probability 

distribution on pure states and it is called a mixed state. The density matrix associated 

with such mixed state would then be given as sum total of the probability times the inner 

product of the two wave functions the ket and the bra. 
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So, the density matrix for say this particular mixed state 0 with probability half and 1 

with probability half can be written in this form. So, the density matrix of the mixed state 



would then the probability of measuring the 0 would be given by the conditional 

probability such that, it is probability of measuring 0 given the pure state psi i. So, then 

we can go ahead and find that this will be basically as we did this exercise before; the 

probability of measuring the state 0 given the pure state psi i; would be the trace of the 

state 0 that the inner product of the two and the density matrix. 

So, the density matrix is again coming into this picture whenever we want to measure the 

probability of the state whenever we have bunch of other states available and we can 

always come back to this picture, where the wave function is a composition of the 

probability of the inner product of the composite wave functions to give rise to the 

solution. So, density matrices contain all the information about an arbitrary quantum 

state. 

Now, this is one of the most important parts of studying density matrices because as I 

mentioned earlier, we have limited information on the states as soon as they are going to 

become mixed states. So for pure states, it is possible to get enough information about 

the state and we can do operations to get the results out of it. However, for mixed state 

the only way to get information about it is as we have been showing is through the 

density matrices. 
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So, now let us look at what it me implies; it implies that we can now work with 

operationally indistinguishable states which are these are expressions in terms of density 



matrices alone, independent of any specific probabilistic mixtures states with identical 

density matrices are operationally indistinguishable. Now this is the corollary of the fact 

that the density matrices essentially carry all the information because in other words of 

saying that those states, where the density matrices are going to be the same; we will 

have very little to do with their particular understanding because if we are going to rely 

on the concept of density matrices to understand them; so all the states where they have 

identical density matrices then they are operationally indistinguishable for us to start off 

with their studies. 
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When we apply unitary operator to a density matrix of a pure state, the resulting state is 

essentially the result of the unitary matrix with the density matrix. So, when we apply 

this we basically get the unitary on operation on the density matrix. 



(Refer Slide Time: 26:48) 

 

When we apply unitary operator to a density matrix of a mixed state say for example, a 

state which has this kind of a behavior, the resulting state is going to have the density 

matrices which will have the property which are going to be given by dependency on the 

density matrix alone. 

So, if you notice the difference in the earlier case when we applied the unitary operation 

to the density matrix of a pure state. The pure state is essentially the only state that 

existed in the wave function, so the unitary operator essentially resulted in only 

providing the information about the pure state directly. The entire wave function could 

be operated on by the unitary operator; however, in this case when it is a mixed case. So, 

with the application of unitary operation, we always get the result which is expected that 

the density matrix is being applied; the unitary operator works on the density operator in 

this form. 
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Now when we do this; this is always true and let us look at how this works the 

operational density matrices for mixed state essentially results in unitary operator 

working on the density matrices and which is still true, as a result of that the effect of 

measurement on a density matrix would end up measuring the state rho with respect to 

the basis say phi 1; all the way to phi d still we will yield the kth outcome with 

probability phi of k rho phi of k ket. 
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Because the effect of measuring measurement on a density matrix measures the state rho 

with respect to the basis yielding the kth outcome with probability this; this is because 

the operation of the density matrix essentially means that we are applying this particular 

wave function as a result of that which means that I have basically ended up producing 

this particular state and the state is collapsing to this particular kth state and therefore, it 

is always measuring the probability of the kth state collapsing into that final state and 

would give the kth outcome with the probability and this is the reason why this is a 

universal measurement which works with the density matrices whenever we use a 

quantum operations using of density matrices. 

And this is something which would work universally whether it is a pure state or a mixed 

state and that is the basic idea; this is collapses to this particular state. So, with this I 

would like to end today’s lecture because we were planning to just give you the 

introduction to the density matrices, its necessity to be one of the important parameters 

that we have been using and time whenever we talk about collapse, whether we are doing 

a pure state or mixed state and in terms of communications and in many times of the 

computing, it has been very important that the overall property or the overall result 

which we have looked at are the important properties that we looked at and in many 

cases it was possible to have a solution only, because we were able to use density 

matrices. 

And so that is why I wanted to give you some important ideas about the density matrices 

before we go further. We will meet you more on these issues in the next lecture. 


