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This week we have been looking at the basics of quantum once more, as we have been 

looking into the implementation angles from the last week. We realized that they were 

certain aspects of the basic part where a little bit more understanding or relook at them 

would help in many ways, to better understand and go forward with implementation 

ideas. So, with this idea we have started relooking into the concepts of the very initial 

aspect of the qubits, their interactions and in this regard we just address the idea of 

coming together of two qubits. 

We are going ahead with those and looking into their interactions and gates and will be 

again going back to the implementations very soon as soon as we mix and bring these 

ideas back on board so that they can be looked at in terms of the implementations that we 

are talking about. 

(Refer Slide Time: 01:23) 

 

So, in terms of two qubits the controlled NOT gate is the gate which are which is going 

to be discussed here. We have looked at these kinds of things before also, it is just a 

revision in some sense of making sure that we are going back to this idea and I just 



mentioned earlier in the lecture that these or gate is one of the classical gates which is x 

or this is one of the reversible classical gates and therefore, it can be implemented 

quantum mechanically. As in quantum mechanics we would like to only have reversible 

gates, so it is also known as the addition modulo 2 in terms of the or gate, so once a c not 

is applied on two qubits, will be able to flip the second bit based on the property of the 

first qubit. 

So the control axis on the first qubit which dictates what is going to happen to the second 

qubit. So, here is the logic here, so as long as the first qubit is 0 nothing happens to the 

second qubit. However, if the first qubit is 1, the second qubit is flipped, so that is the 

controlled NOT that we have seen. So, with 1 as the first qubit the control bit; our second 

qubit flips and so that is why you get to see the logic operational here and that gives raise 

to the matrix where the first part, where the control bit is not operational it is not going to 

change, is an identity whereas in the other case where the control bit is present, is going 

to flip, so it is going to have it in the NOT form. So, this part; the first part of this looks 

like an identity whereas the second part looks like the NOT gate, so that is the control 

NOT. 

(Refer Slide Time: 03:46) 

 

Measuring of the qubits in this case as before for all quantum system would be uncertain 

before the measurement is done; however, after the measurement this state is certain it is 

either one of these 0 0, 0 1, 1 0 or 1 1 like in the case of classical 2 bit system. We have 



already discussed this idea that whenever we have measurement made then it follows to 

the classical condition. So, before the measurement, the states of the system consisting of 

2 qubits are uncertain; it is a super position state, which is being subjected to the gate 

applied. However, after the measurement we can collapse into one of the four 

possibilities. 

(Refer Slide Time: 04:36) 

 

So, if we want to observe only the first qubit, what are the conclusions that can be 

drawn? We expect that the system to be left in an uncertain state because we did not 

measure the second qubit that can still be in a continuum of states. The first qubit can be 

0 with probability of alpha 0 0 squared plus alpha 0 1 squared. 



(Refer Slide Time: 05:08) 

 

And 1 with probability of alpha 1 0 squared and alpha 1 1 squared, it is we call psi 0; 

superscript i as the post measurement state, when we measure the first qubit and find it to 

be 0 and we call the other one where we are going to find at 1 as psi i 1 then will be 

finding that these follow, these formulas where each of them will give raise to their 

probabilities. 

(Refer Slide Time: 05:41) 

 

And similarly if we label the second qubit measurement in a similar fashion, we will be 

finding that they will follow this particular format of probability; that means, the 



probability of measuring 0 would be for the second qubit with be of this kind, is the 

probability of measuring 1 for the second qubit would be of this kind. 

(Refer Slide Time: 06:05) 

 

For bell states which is a very special state of pair of qubits which cannot be broken into 

the individual qubits that they come from the, both these alpha 0 0s and 1 1 or 1 by root 2 

and 0 1 and 1 0 are going to be 0. When we measure the first qubit, we get the post 

measurement state as 1 1 and 0 0, but as we measure the second qubit we get the post 

measurement state as 0 0, 1 1. 

(Refer Slide Time: 06:41) 

 



This is an amazing result because the two measurements are correlated, once we measure 

the first qubit we know exactly the same result as when we measure the second one. So, 

that is a very important result that the two measurements are correlated. So, measuring 

the first qubit gives us the measurement that we have going to get from the second one 

measure. So, the two qubits need not be physically constrained to be in the same location 

and yet because of the strong coupling between them measurements performed on the 

second one allow us to determine the state of the first one and so this is a very interesting 

principle which enables the measurement of one correlated to the other one. 

(Refer Slide Time: 07:35) 

 

So, this arrives at the idea of entanglement which was discovered by Schrodinger, it can 

be formally defined as follows an entangled pair is a single quantum system in a 

superposition of equally possible states. The entangled state contains no information 

about the individual particles only that they are opposite states, so this an important 

point; that it does not contain any information about the individual states or in other 

words an entangled pair can never be decomposed back to the individual states which 

give raise to the entangled pair. 

So, this is one of the principles which led Einstein to lose faith on quantum mechanics 

and he came up with this principle that it says spooky action at a distance because there 

is no requirement of how close these states are to be for this particular property to be 

maintained. 
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We have looked at classical gates and classical gates are there to generally implement 

Boolean functions, they are not reversible, we cannot recover the input knowing the 

output which means that there is an irreversible loss of information when we are looking 

at classical gate, that is one important aspect of the classical nature of computing and 

these are the typical classical gates which are essential for the basis of a computer to 

work. 

(Refer Slide Time: 09:14) 

 



So, these are the set of basis gates on the basis of which a computation can be performed, 

so as the NOT gate, AND gate, the NAND gate, the OR gate, the NOR gate and the 

XOR gate, most of the computations can be belt on this particular few fundamental basis 

gates in terms of classical computation. 

So, the ideas of these a very clear; NOT gate is essentially just opposite. So, y is equal to 

not of x and gate always involves more than two states. So, we would have two states 

come in to give raise to the third state, the NAND gate the not and gate also requires 

minimum of three states the OR gate also has two inputs to give raise to one output 

which is one of the 2. So, NOT reversible, NOT reversible, NOT reversible, the NOT or 

gate is also not reversible because the input and the output are not the same number. 

However, the XOR gate is something where as we will see later on can be correlated to a 

condition which can be made reversible, but as it directly looks like here it is also a non-

reversible condition for the classical case, the only reversible gate in that sense is the 

NOT gate. 

(Refer Slide Time: 11:14) 

 

So, the idea of the gate in terms of quantum mechanics where is the operation of a square 

matrix on the qubits that we have. So, for a single qubit it will be a 2 by 2 matrix which 

will operate on the input qubit to give raise to the final result, so this is the square matrix 

which defines the operation. 
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So, the basic 1 qubit gates are the identity gate, which leaves the qubit unchanged. The X 

or the NOT gate which transposes the components of an input qubit, the Y gate which 

rotates the qubit around the Y axis of the Bloch sphere by pi radians, the Z gate which 

flips the sign of a qubit and the Hadamard gate which makes equal superposition of the 

individual qubits. Now all of these qubit gates in terms of quantum mechanics are going 

to be reversible because that is the basic requirement of quantum mechanics. 

(Refer Slide Time: 12:37) 

 



The other important aspects of these gates are for identity transformations the Pauli 

matrices are the once which work on the spin basically they rotate or producer it identity 

matrix and the Hadamard which makes an equals super position. So, these three are the 

most important aspects of the gates that we have looking at, the identity transformation is 

the one which basically just keeps the same qubit. The x gate is the NOT gate, this also a 

part of the Pauli matrices, the y which I described is the rotation and the z gate which 

was the one which flips the sign of the qubit and the Hadamard one, these are one 

basically next equals super position of the two qubits. 

(Refer Slide Time: 13:48) 

 

The CNOT that we had looked at earlier also is a two qubit gate, which requires an 

control input as a result of which the target input is going to be undergoing addition 

modulo two. The control bit is transferred to the output as it is and that is the quantum 

nature of this particular control gate going to be reversible. So, there are two inputs 

control and target and there are two outputs one is the control (Refer Time: 14:22) as it is 

and the output which is going to be addition modulo 2. The target qubit is unaltered if the 

control qubit is 0 and is flipped if the control qubit is 1. 



(Refer Slide Time: 14:35) 

 

So, that is the one that we have shown here which keeps raise to this again the same 

matrix that we discussed before with the first upper part to be the one which essential it 

is identity does not do anything, keeps the same form but is the other one flips it, it is a 

NOT gate. 

(Refer Slide Time: 14:47) 

 

The two input qubits of a two qubit gates and the super position of the two states and 

then they can be put together as a matrix multiplication form, to give raise to the overall 

states which are going to undergo tensor multiplication to give raise to the final results. 



(Refer Slide Time: 15:28) 

 

The state space dimension of the classical and quantum systems are also quite different, 

the individual states space of n particles combine quantum mechanically through the 

tensor product. So, if X and Y are vectors then that tensor product is also a vector, but its 

dimension is now the multiple of the 2, while is the vector (Refer Time: 15:51) product 

has addition of the dimensions of the 2. So, for example, if dimension of x and 

dimension of one, dimension of y is 10 then the tensor product of the two vectors has 

dimension 100 while the vector product has dimension of 20 and this is the reason for the 

exponential nature of the quantum computing process. 

(Refer Slide Time: 16:14) 

 



Parallelism and quantum computers in the quantum system, the amount of parallelism 

increases exponentially with the size of the system thus with the number of qubits in 

quantum systems, the amount of parallelism increases exponentially with the size of the 

system. Thus with the number of qubits for example, 21 qubit quantum computer is 

twice as powerful as a 20 qubit quantum computer. So, that is the exponential nature of 

the problem that is the advantage in the quantum computers, a quantum computer will 

enable us to solve problems the very large state space that is the biggest advantage of the 

quantum parallelism that we take advantage of. 

(Refer Slide Time: 17:00) 

 

In case of the quantum circuit as we have been discussing, if we have a given function f 

of x, we can construct a reversible quantum circuit consisting of say the Fredking gates 

only capable of transforming two qubits as follows, the function f of x is hardwired into 

the circuit. 



(Refer Slide Time: 17:27) 

  

So, this is how looks like which is sort of the CNOT that we looked at, if the second 

input is 0 then the transformation is done by the circuit is given by as this one. 

(Refer Slide Time: 17:35) 

 

And we apply the first qubit through a Hadamard gate then produce state whereas, the 

resulting state of the circuit is this, the output state contains information about f of 0 and 

f of 1. 



(Refer Slide Time: 17:51) 

 

The output of the quantum circuit contains information of both f 0 and f 1, this property 

of quantum circuit is called quantum parallelism. The quantum parallelism allows us to 

construct the entire truth table of quantum gate arrays having 2 n entries at once, in a 

classical system we can compute the truth table in one time step with 2 to the power n 

gate arrays running in parallel or we need 2 n times steps with a single gate array. 

(Refer Slide Time: 18:35) 

 

If we start with n qubits, each of the state 0 and we apply Walsh-Hadamard 

transformation, we are able to do this particular gate principle. So, we have seen all these 



gates before, so I am not going into a details of it Walsh-Hadamard is the one which we 

use for the Grover’s algorithm and so we can go on with these number of dimensions 

which go higher and we have given this new principle where we have actually telling 

you how these dimensionality of the problem is increasing because you are doing 

quantum way your dimensionality is going as the product of the cases. 

(Refer Slide Time: 19:09) 

 

So, here we can take the Hadamard on a particular step and we can repeatedly apply the 

Hadamard on n qubits which are undergoing tensor products and as result we can get the 

superposition of states, which have undergone the Hadamard operation. So, we can apply 

this unitary transform on that as a result of this operation, so a Hadamard operation of 

this kind, so do looks like this. 



(Refer Slide Time: 19:51) 

. 

And this can be utilized for looking at the Deutsch’s problem once again the Deutsch’s 

problem was the one where, it was going to look for the balanced function, whether the 

function is balanced or not. So, if we consider black box characterized by a transfer 

function that maps a single input bit into an output, takes the same amount of time t to 

carry on each of the four possible mapping performed by transfer function f of x in the 

black box. 

The problem posed is to distinguish if the function is going to be equal for both f equal to 

0 and f equal to 1 or it is going to be unbalanced, this is f 0 is NOT equal to f 1. 



(Refer Slide Time: 20:39) 

 

So, the times scales involved in each of these cases are shown here, the unitary operation 

which goes for this takes this into the operation procedure where we can do all of this in 

one shot. So, the quantum circuit to solve the Deutsch’s problem can be given in this 

particular form which has been discussed earlier also, but here we are just telling you the 

details in some sense, we have the initial inputs 0 and 1, which goes through first 

Hadamard operation on both the inputs and then it is undergoing a unitary transform 

where the essential part of the unitary transform is to take one part of bit into the modulo 

function whereas, the other one remains the same and then the first part undergoes the 

Hadamard transform while the second one is essentially gives raise to the final answer. 



(Refer Slide Time: 21:41) 

 

So, in terms of the matrix operations and the tensor products, these are the basic steps 

which undergo in terms of how this entire process goes, the overall gates that we are 

applying are multiple Hadamard gates which are getting applied in a tensor form which 

grows in terms of the size, these are then looked into by applying the overall gate. So, 

here is the g 1 gate which has been created and that is been applied to the original 

Hadamard transformed input which then gives raise to the final result in first step and 

then that is been looked into as a combine state which can be broken down into two 

different states as that then forms a basis sets of x and y. 

So this is the first form of the part which goes in when we look at this point, so at 1 this 

is what we have just achieved, this is the process which takes us from 0 to 1, so here this 

entire step goes from 0 to 1 in our earlier slide here. 
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Next it undergoes an interaction with the unitary transform where it undergoes the 

function modulo applying on the y qubit and it gives rise to a functional form which 

would be of this kind. So, this is the part where we have the form of the function 

interacting with a y qubit and so the y qubit takes this particular format, follows the 

principles that if f of x is equal to 0, it will be the positive value whereas, if it is 1 it will 

give the negative value. 
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So, the x and y are the ones that we have started off with after we have gone through the 

Hadamard transform then we have applied the gate. So, these gates essentially take the 

first qubit into the unitary transform which gives rise to the solution whereas the second 

qubit undergoes the part where the solutions would be of this kind and based on their 

individual results will be able to have the different conditions that we give raise to them. 
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So, in the end will be having two conditions, one when our function is equal in one case 

and it will be different when our function is not equal and so by idea that our interaction 

for the part which is the second qubit would give raise to this results will be able to 

understand how this interaction goes on. 
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So, in the third part is again the first part goes to Hadamard transfer and so that the upper 

qubit goes through a Hadamard transfer rate; however, the second part of the qubit 

remains as is. 
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So by measuring the first output qubit, we are able to determine whether f of 0 addition 

modulo of; f 1 is performing a single evaluation or not. So, if we go ahead with this 

result will be actually getting either 0, when f of 0 is equal to for 1 and it will be 1 when f 

of 0 is not equal to 1. 



So, that is the basic idea behind the Grover’s algorithm that we had looked at before and 

in many cases this implementations have been utilized as we have done in our last few 

lecture. In this lecture we have been revisiting the aspects of quantum computing basics 

in relation to the implementations that we have been undergoing over the last few weeks. 

In the next lecture, we will be dealing with some more of the basics and some other 

implementation aspects as we develop the basics in relation to the implementations and I 

look forward to having you in the class. 

Thank you. 


