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So in today’s class I will be discussing some more solutions of second order differential 

equations, I will be talking mostly about homogeneous equations and I will very little bit 

about non homogeneous equations. 
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So, let us just remind ourselves what we know about second order differential equations. 

So, we said that we can write as a general second order differential equation second 

order linear differential equation as in this form A of x y prime plus B of x y is equal to 

C of x this is if C of x is not equal to 0, this is called non homogeneous C of x not equal 

to 0 if you have C of x equal to 0 then you have something like this y double prime plus 

a of x y prime plus B of x y equal to 0, this is homogeneous and we saw that for 

homogeneous equations you have basis functions. So, you can write you can write your 

general solution as a linear combination of basic functions C 1 y 1 plus C 2 y 2 where y 1 

and y 2 our solutions or solutions of the differential equation. 

So, homogeneous differential equations have this nice feature now which is not 

therefore, non homogeneous equations. So, you cannot write this for non homogeneous 

equations and you can you can easily verify this for certain non homogeneous equations. 

So, today I want to first start the discussion of a special type of homogeneous linear 

second order differential equation it is those with constant coefficients. So, what do you 

mean by constant coefficients. Solves second order linear homogeneous equations with 

constant coefficients. So, all you do for constant coefficients is that you will say this A of 

x and B of x are constants these are these are in general functions of x, but if these 

functions are constants then you will get second order homogeneous equation with 

constant coefficients. So, you will have y double prime plus a times y prime plus B times 



y equal to 0, A and B are constants. So, A and B are constants and; obviously, y is a 

function of x. 

Now, how do you solve, how do you solve such a differential equation? Now again there 

are you can do this using a the system of differential equations you can convert it into 2 

to first order differential equations and then you can use matrix methods alternatively 

you can directly do this in a using trial solutions. So, you are trial solution y equal to e 

raise to lambda x and I did not put a constant before this because you can put any 

constant and it will still be a solution. So, since it is a homogeneous equation I can 

always multiplied by constant and get another solution, but so, I will just put y equal to e 

to the lambda x I will not bother putting the constant in front. So, if y equal to e to the 

lambda x then you know that y prime equal to lambda times e to the lambda x and y 

double prime equal to lambda square e to the lambda x and now if you substitute these in 

the differential equation. 
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Then you get what you get when you substitute this in this. So, y double prime is lambda 

square e to the lambda x plus A lambda e to the lambda x plus B e to the lambda x equal 

to 0 and since this is true for all x, I can cancel this e to the lambda x term I get a relation 

lambda square plus A lambda plus B equal to 0 and A and B are constants. So, this 

implies lambda equal to negative a plus minus square root of A square minus 4 B divided 

by 2. 



So, it is a quadratic equation and these are the solutions. So, what I can write? I can write 

let us say I call it lambda 1 as minus a plus square root of a square minus 4 B divided by 

2 and if I write lambda 2 as minus A minus square root of A square minus 4 B by 2 then 

my I have 2 solutions I have 2 solutions. So, I have y 1 is equal to e to the lambda 1 x 

and y 2 equal to e to the lambda 2 x. 

Now if lambda 1 and lambda 2 are distinct then these 2 solutions are linearly 

independent. So, if lambda 1 not equal to lambda 2 then solutions are linearly 

independent and if they are linearly independent then you can write general solution y is 

equal to C 1 y 1 plus C 2 y 2 is the general solution. Now this is very nice because we 

converted our differential equation into a simple quadratic equation and we know the 

roots of the quadratic equation and we can immediately find the solutions. If they are not 

linearly independent if these if lambda 1 is equal to lambda 2 what you do well it is not 

too hard you can you can find one solution, but you learnt in the last class that once you 

have one solution you can find the second solution by variation of parameters. 

So, the second solution is, if I just have 1, y 1 I can find a linearly independent solution 

by using method of variation of parameters. So, I will just write. So, if lambda 1 equal to 

lambda 2 equal to lambda then y 1 equal to e to the lambda x and we can find linearly 

independent y 2 by variation of parameters what we did in the last class with those you 

and so on. So, if you go ahead and do this then what you will get is that you will find that 

this will lead to y 2 is equal to x e to the lambda x. So, the general solution y is equal to 

C 1 e to the lambda x plus C 2 x e to the lambda x these 2 are linearly independent 

solutions and that is what you can do and you can easily verify this. 

So, I will just I will just say that you can verify this verify this using the methods that we 

did in the last class. So, you write your y 2 as u times y 1 and then you substitute in the 

differential equation and after all this cancellation and everything you will find that u u 

prime equal to 0 and. So, u will be equal to constant capital u and. So, and an after that 

since u is a constant your small u just becomes equal to x. So, and. So, I can write y 2 x x 

e to the lambda x what this shows is that if you have a homogeneous equation with 

constant coefficients. 
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Then you know the solutions you can always find 2 linearly independent solutions now 

let us look at the nature of the solutions. So, the solutions we said that you have lambda 

is equal to negative a plus minus square root of a square minus 4 B divided by 2. So, if a 

square minus 4 B is greater than 0 strictly greater than 0 then we have 2 real roots 2 real 

roots; that means, lambda 1 and lambda 2 are real these are real numbers then the 

solution y is equal to C 1 e to the lambda 1 x plus C 2 e 2 the lambda 2 x is exponential. 

So, it is basically a sum of exponential functions. So, it involves 2 exponential functions 

and it is a sum of these 2 exponential functions and you know lambda 1 can be positive 

or negative if it is positive then it is exponentially increasing if it is negative it is 

exponentially decreasing. 

Now if a square minus 4 B is less than 0 then 2 complex roots, I will just call the 2 roots 

as lambda 1 equal to lambda real plus I times lambda imaginary. So, lambda is lambda is 

the imaginary part which is basically this term the second part of this of this solution 

lambda real is basically minus A by 2 and similarly lambda 2 will be exactly the same 

lambda real minus I times lambda imaginary where I will just emphasize again. So, 

lambda real is equal to minus A by 2 and lambda imaginary is equal to 4 B minus a 

square root of that divided by 2. So, since a square minus 4 B is less than 0. So, for B 

minus A square is greater than 0, so the imaginary path is just this that is multiplied by 

the by I, so the 2 complex roots have this feature. So, then I can write my y as C 1 e to 

the now lambda 1 will have a lambda real plus I lambda imaginary. 



So, I will just take the lambda real times x and then I have e to the i lambda i times x and 

in the second case for my second function again I will have C to e to the lambda r x and e 

to the minus lambda i x. So, I can write this as e to the lambda r x C 1 e to the lambda i 

times lambda i x plus C 2 e to the i times lambda i x and again I want to emphasize that 

both lambda r and lambda i are real quantities. So, this is basically an exponential 

multiplying a multiplying and exponential of imaginary of imaginary number and you 

know that exponential of imaginary number can be written as a linear combination of 

sines and cosines. So, you know that e to the i lambda i x can be written as sign of 

lambda i x plus i times cosine of lambda i x. So, this is a general property of an 

imaginary number. So, you can write it as a sum of sines and cosines. So, essentially 

what you have here is these functions look like a combination of sines and cosines. 

So, what you have is an exponential function multiplying an oscillating function. So, you 

have an exponential function multiplying an oscillating function. So, you have an 

exponential multiplying and oscillatory function.  
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So, this is the case when a square minus 4 B is less than 0. So, a square minus 4 B is 

greater than 0 then you have only exponential functions if you have a squared minus 4 be 

less than 0 you have exponential multiplying an oscillatory function and what about of a 

square minus 4 be equal to 0 a square minus 4 be equal to 0 then the solutions will just 



be it look like e to the lambda x and you have C 1 e to the lambda x plus C 2 x e to the 

lambda x. 

So, you have only 1 root. So, both the roots become the same because lambda equal to 

lambda 1 equal to lambda 2 equal to minus a by 2. So, the solutions just look like this. 

So, lambda is just minus a by 2. So, you have e to the minus a by 2 x and you have C 1 

plus C 2 x. So, the other linearly independent solution is just x into the lambda x. 
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Now, now these ideas that we said here are actually seen in a very practical situation 

which is called the damped harmonic oscillator. So, what is the damped harmonic 

oscillator? So, the damped harmonic oscillator the is has satisfies the differential 

equation y double prime plus 2 eta y prime plus omega square y equal to 0. So, if you did 

not have this middle term then it would just be a simple harmonic oscillator y double 

prime plus omega square y equal to 0, but this is a damping term that is there and n I 

should mention that eta and omega square r both greater than 0. 

So, now, now this is exactly of this form that we had before this is exactly of the form of 

this second order differential equation with constant coefficients. So, it has exactly this 

form instead of a you have 2 eta and instead of B you have omega square and the reason 

we put omega square is because we want this quantity to be strictly greater than 0 now 

there are 3 possible cases. So, case one is when is when the; what you have is you can 



say that it is square of this. So, 2 eta square minus 4 omega square is let me say greater 

than 0.  

So, in other words this will, so I can cancel the 4 and what I will get is eta square is 

greater than omega square or eta is greater than omega. So, you have the case. So, if eta 

is greater than omega then this quantity is greater than 0 and what we said if this quantity 

is greater than 0 you have exponential solutions. So, the solutions are exponential and 

you will recall the solutions look like e to the lambda 1 x and e to the lambda 2 x where 

lambda 1 and lambda 2 have this form I will write it explicitly. So, lambda equal to. So, 

in this case you get minus eta plus square root of eta square minus omega square and you 

have. So, you have plus minus this and since eta is greater than omega then this solutions 

will be purely exponential. So, your solution looks like e to the lambda 1 x plus e to the 

lambda 2 x. 

So, this is the first case now notice that if eta is greater than 0 and if eta is greater than 

omega then you know that this; the root well this is plus. So, this quantity will always be 

less than eta. So, this lambda will always be negative. So, what you have is exponentially 

decaying solutions. So, I can write this as exponentially decaying solutions. So, what you 

say that the solution is over damped. So, this is called an over damped oscillator in case 2 

you have eta less than omega and now we are solutions are now you have exponential 

multiplied by this exponential of imaginary. 

So, exponential multiplied by oscillating. So, these are. So, in this case your solutions are 

actually you have both these oscillations and you have the exponential functions. So, in 

this case you say that the solution is under damped and what does this solution look like. 

So, it look like it look like e to the minus eta x C 1 e to the I omega x plus C 2 e to the 

minus I omega x you can verify this you can verify this just I just is wrote exactly what 

you had in this case lambda r and lambda i the third case lambda equal to omega is called 

as critically damped and here the solution looks like solution looks like e to the minus 

lambda x C 1 plus C 2 x. 

So, basically each of these solutions has different feature in the first case do this 

exponential functions in the second case you had exponential multiplied by some 

oscillating functions. So, this might look like if you plot this if u plot y as a function of x 

y as a function of x then what you will get is you have an exponential minus x. So, you 



have you have this, but then you have oscillation. So, it looks like it looked like 

oscillations whose amplitude is constantly decreasing. So, this is what happens in the 

under damped case in the over damped case you just have you do not see any oscillations 

you just see you just see exponential. So, since they are negative exponential you will 

just see something like this and the critically damped is just at the boundary when you 

are about to get oscillating solutions. So, you do not have oscillating solutions you are 

just about to get right when you are going from exponential to this exponential 

multiplied by oscillating solutions. 

So, these are well known solutions of the damped harmonic oscillator and we can see 

them in a very easy way using the solution of the differential equation now next I will 

just mention another type of equation which you can also solve using very similar tricks. 
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So, this equation has a form. So, this is called the Euler-Cauchy equation and this as a 

form x square y double prime plus a which is a constant times x y prime plus b times y 

equal to 0. Now notice what I did was when I have the second derivative I multiplied by 

x square when I have a first derivative I multiplied by a constant by x. So, that is what 

the terms look like. So, if you want you can take the x square in the denominator, but you 

do not need to do that writing it in this form suggests you what the solutions should look 

like. So, what should the solution look like? Now you know that when you take a second 

derivative of some power of x then you get power of x reduced by 2. 



So, now, you are squaring now you are multiplying by expressive you will get back to 

the same power of x. So, the trial solution and here y equal to x rise to n. So, if you trial 

solution of y equal to x raise to n then you get y prime is equal to m x raise to m minus 1 

and y double prime equal to m m minus 1 x raise to m minus 2 and now if you substitute 

in this equation. 

So, x square times y double prime will give you m m minus 1 into x square into x raise to 

m minus 2. So, all will get is m, m minus 1 into x raise to m and plus a; now x times y 

prime is just m times x raise to now you had n minus 1 and multiplied by x j gives you x 

raise to m and b times y is just b times x raise to m equal to 0 and by doing this you can 

see that you can cancel the x raise to m. So, just as in the last case you get an equation m 

m minus 1 plus a m plus b equal to 0 this is a quadratic equation in m in m and I can I 

can write it explicitly as m square plus m times a minus 1 plus b equal to 0. 
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So, that is the explicit quadratic equation in m and whenever you have a quadratic 

equation you can have 2 roots. So, 2 roots m 1 and m 2 and again you can have the si 

similar case similar case cases. So, m 1 m 2 can be both real or it can be both complex 

both complex means they have both the real and imaginary part and you can have or you 

can have m 1 equal to m 2. 

So, these are the 3 cases and I will not do this explicitly, but you can see in which case 

you would get each of these. So, you would get both real if this B square minus. So, is a 



minus 1 square is greater than 4 b and there will be both complex if a minus 1 square is 

less than 4 b and you will get to coincident roots is a minus 1 whole square equal to 4 be. 

So, these are the conditions in which you will get these solutions and you know what to 

do if you get. So, the general solution will look like the first 2 cases you can write y is 

equal to C 1 x raise to m 1 plus C 2 x raise to m 2 if m 1 is not equal to m 2 and if m 1 

equal to m 2 then you have to then you find one root and you get the other root by 

variation of parameters. 

So, if m 1 equal to m 2 equal to m then you say y 1 equal to x raise to m and you when 

you solve for y 2 using y 2 using y 2 equal to u times x raise to n you times y 1 or you 

times x raise to m. So, you can do you can make the substitution you can put in the 

differential equation and you can solve for y to I will not do this so, but I will leave it as 

an exercise for you to try. So, try to solve for y 2 using the same variation of parameters 

that we had done in the last class. So, I will stop this discussion on homogeneous second 

order differential equations here. So, in the next class, I will tell you what to do if you 

have a non homogeneous second order differential equation. 

Thank you. 


