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So today will be the final lecture of module 2 where I will be working on some practice 

problems. So, in this module, you have studied the basics of vectors; vector spaces and 

vector functions, and we studied some properties of vectors like linear independence and 

the dimensionality. And I will be focusing the practice problems today on these base 

concepts of vectors, and we will look at more problems related to scalar and vector field 

in the problem sets of the next module. 

So, today I will show you some elementary problems that deal with vectors, vector 

spaces and vector products, the end the concepts of linear independence. 
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So, let us take the first problem. So, the first problem; ask, you do the following vectors 

form a basis in 3-D space. So, what do you need to check for a basis, so the condition; 

so, in 3-D space you can have only 3 basis vectors; now they can there are many choices 

for basis vectors, but the conditions for them to be basis vectors is that they should be 

linearly independent. So, if you have 3 linearly independent vectors you can choose them 

as a basis in 3-D space. So, what you have to check is whether these vectors are linearly 

independent. So, are 1, 2, 1 0, 1, 1 and 1, 0, 0 are these vectors linearly independent. So, 

that is the question that we have to answer. 

Now, in general the way to check linear independence is to take a linear combination of 

these, and set it equal to 0 and see if you get a non trivial solution. So, what you will say 

is that you will say the you will say c 1 times 1, 2, 1 plus c 2 times 0, 1, 1 plus c 3 times 

1, 0, 0 equal to 0. Now if non-trivial solutions, solution exists that is c 1, c 2, c 3 are not 

all 0 then the vectors are dependent or linearly dependent. So, what you have to do is you 

have to set this condition and you have to check whether there exists a non trivial 

solution. Now this condition is actually the way this is actually a set of 3 equations 

because this is the vector equation. 

So, if I write out the 3 equations. So, the first equation is c 1 plus c 2 plus c 3; c 1 plus 0 

c 2. So, if you just look at the x component you have c 1 here, you have 0 c 2 here, and c 

3 here. So, this would be equal to 0 if you look at the y component then you have 2 C 1, 



and you have plus c 2, plus 0 c 3 equal to 0. If you look at the z component then you 

have c 1, plus c 2, plus 0 c 3 equal to 0. So, you have 3 equations and 3 unknowns and 

these are what are called homogeneous linear equations, so the condition for there to be a 

non trivial solution of this that is this equation. So, if I set c 1 equal to c 2 equal to c 3 

equal to 0, I will automatically satisfy these equations, but is there a possibility of c 1, c 

2, c 3 not all 0 that is what we have to ask and you might be knowing this, but you can 

easily show this that you evaluate this determinant, you look at the coefficients you put 

them in the form of a determinant and. So, you put 1, 0, 1, 2, 1, 0, 1, 1, 0 and you 

calculate this determinant and it is not hard to show this determinant is just. So, it will 

just be 1 times 2 minus 1. So, equal to 1 times 2 minus 1 equal to 1 not equal to 0, so 

since if this determinant is not equal to 0 that means, the only solution that exists is for c 

1, c 2, c 3 to all be 0; so vectors are. So, that would mean the vectors are linearly 

independent and they form a basis. 

So, just to recap what we did was we wanted to check whether these 3 vectors are 

linearly independent. So, what we did is you write the condition for linearly linear 

independence, and what you will find is that you will get the condition that this 

determinant if it is 0 then the vectors are linearly dependent, if it is not equal to 0 then 

the vectors are linearly independent. That means, you cannot write one as a linear 

combination of the others, and if you cannot write one as a linear combination of the 

others then these vectors will form a basis. And it is fairly straightforward to actually just 

a look at the 3 vectors and you can immediately see that they are linearly independent, 

because if you look at the second vector it has no x component whereas, the third vector 

has an x component and it has no y and z component, and the first vector has all 3 

components. 

So, clearly if you I mean, so it is clear that that you know you need what you are 

checking is whether this vector can be written as a combination of these 2, and just by 

inspection you can see that is not possible. So, this is the problem that has dealt with 

linear independence. 
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Now, I will give you another problem and this is so the second problem. So, you are 

asked whether the vectors 0, 0, 1, 1, 0, 0 minus 1 minus 1 0, and minus 1, 5,49 are 

linearly independent. 

Now, the answer is no, and the reason is that 4 vectors in 3-D space cannot be linearly 

independent. So, if I give you a 3 dimensional space the maximum number of linearly 

independent vectors is 3 because the basis of that space is 3. So, you can never have 4 

linearly independent vectors in a 3 dimensional space. So, without any inspection 



without checking anything you can immediately say that these vectors cannot be linearly 

independent. 

Now, the next question has to do with vector spaces and inner product spaces. So, there 

are 2 parts. So, first is you have to check whether the set of all square integrable complex 

functions f of x forms a vector space, I will just put a star in this definition. So, what you 

have to see is whether the set of square integrable complex functions forms a vector 

space, now actually this is not a real vector space this is what is called a complex vector 

space, but we will just check whether these axioms are satisfied. So, if you want to check 

whether the set of certain functions forms a vector space, then what you have to do is to 

check whether given f and g belonging to the vector space V is c 1 f plus c 2 g contained 

in v. So, if you take any linear combination of this is also contained in the vector space. 

So, that is essentially the most important condition to check. 

Now, a square integrable function in a complex space satisfies. So, it is a square 

integrable implies integral f star f d x, and we will just take a one dimensional space so 

from minus infinity to plus infinity, this should be greater than equal to 0 and less than 

infinity. Why this should this should be greater than 0 because f star f is positive and if it 

is less than infinity then you say that the function is square integrable. 
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So, now, let us a check whether that forms a vector space. So, what you have to do if you 

have 2 functions that are square integrable, then is a linear combination of them also 

square integrable. So, what you have to check is whether given f g square are square 

integrable is c 1 f plus c 2 g also square integrable. So, this is also square integrable and 

this is what you have to check also. So, how do you check this? So, you calculate c 1 f 

plus c 2 g take a complex conjugate then you take c 1 f plus c 2 g and you do this integral 

d x from minus infinity to infinity, and you have to check whether this is less than 

infinity. 



So, what you will get is that this will be c 1 square integral f 1 star f, d x plus c 2 square 

integral f 2 star or g star (Refer Time: 12:35) g star (Refer Time: 12:39) f f star f, this 

should be g star g g star g d x now you remember c 1 square is c 1 star times c 1. So, 

these are the 2 things I am not bothering putting the limits here and then you will have 

cross terms that look like c 1 c 2 I will write it as c 1 star c 2 integral f star g d x plus c 1 

c 2 star integral f g star d x. 

Now, the first 2 terms are clearly less than infinity since the square integrable f star f will 

be less than infinity, g star g integral of g star g and integral of f star f will both be less 

than infinity. So, the first 2 terms are clearly less than infinity what about the third term? 

So, the third term satisfied. So, what you notice is that the third and fourth terms are just 

complex conjugates of each other, and if we take a number and add its complex 

conjugate then what you will get is that you will just get the real part of that number. So, 

I can write this as the real part of c 1 star c 2 integral f star g d x, and now actually we 

will see this in a minute there is a condition that there is a there is a inequality called the 

Schwarz inequality, which basically says that integral f star g d x is less than or equal to. 

So, the absolute value of this is less than or equal to the square root of integral f star f, d 

x times integral g star g, d x. 

We will show this in the in the next problem, but the basic idea is that this integral this 

where you have f star and g is basically less than the product of f star f, and g star g and 

under the square root sign. Now each of f star f and g star g is less than infinity. So, 

therefore, f star g into integral f star g d x has to be less than infinity. So, what you get is 

that this whole thing is less than infinity, because each of these terms are individually 

less than infinity. So, basically if f and g are square integrable this is also square 

integrable. So, with this you can basically show that this is a valid this forms a vector 

space. 

Now, the next problem is to check whether the inner product and define this way is a 

valid definition of the inner product. So, whether the inner product define this way is a 

valid definition of the inner product and again you can show this easily, you can show 

that if the 2 conditions for validity of inner product is that f s f times f and inner product 

of f with itself. So, this implies inner product of f with itself should be greater than or 

equal to 0, and again you can easily see that the other condition is that the inner product 

of f with g should be equal to inner product of g with f. 



Now, this is true for a real inner product space, for a complex inner product space 

actually this is modified with a star. So, these 2 conditions you can easily see again from 

this definition of inner product. So, this is a valid inner product, now I just want to 

mention one thing why I chose this complex vector space, the reason I chose this 

complex vector space is that this thing is something called a Hilbert space. So, this space 

is called a Hilbert space and this is the vector space in which the entire mathematics of 

quantum mechanics is performed. So, the your entire mathematical aspect of quantum 

mechanics works on this Hilbert space which is not quite a real inner product space, but 

it is a complex inner product space. 
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Now, the next question; so, just to emphasize I will just emphasize this here that Hilbert 

space is a complex vector space and inner product satisfies f g equal to g f star, and f g is 

given by integral f star g and d x, and this is given by integral g star f d x. So, the Hilbert 

space is actually this complex vector space where the inner product is defined in this 

way. So, and this is essential in quantum mechanics. 



(Refer Slide Time: 19:20) 

 

(Refer Slide Time: 19:22) 

 

So, next practice problem is to prove the Schwarz and triangle inequality for the inner 

product as given below. So, what is the Schwarz inequality and what is the triangle 

inequality, and we will prove this in general. So, I will just tell you what the Schwarz 

inequality is. So, the Schwarz inequality; so for any inner product for any inner product 

space and for any inner product the Schwarz inequality basically says that if I take an 

inner product of f g, that should be less than equal to square root of f f and g g. 



So, across in a product is always less than the product of the individual inner products 

the norms product of the norms. So, that is the. So, in other words I can write it as is less 

than or equal to norm f into norm g. So, this is the Schwarz inequality; the triangle 

inequality this is like saying that the sum of lengths of 2 sides of a triangle should be 

greater than or equal to the length of the third side. So, in terms of vector spaces, so what 

it says is that f plus g in a product with f plus g, this should be strictly less than or equal 

to f inner product with f plus g inner product with g and all this should be under the 

square root (Refer Time: 21:18). 

In other words norm of f plus g should be less than equal to norm of f plus norm of g. So, 

this is the triangle inequality and what we are going to do is we are going to go ahead 

and show both these inequalities. Now there are many ways to prove the Schwarz 

inequality, the one common method that is used is that is to actually choose is to use the 

idea use norm of any function norm of any function should be greater than equal to zero. 

So, the. So, in the definition of the inner product one of the conditions is that norm of 

any function should be greater than 0, then what I will do is I will choose h is equal to f 

minus g times f comma g divided by g comma g. 

So, I just took I just took a particular form of form of h and now and now if you calculate 

h comma h you will get it as if you write it out. So, you will get this inner product with 

itself, and what you will get is f minus g, f g divided by g g, comma f minus g, f g by g g. 
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You can unfold these brackets and you can multiply them term by term what you will get 

is h comma h is equal to f comma f minus. So, you will get one term that takes inner 

product of this with it with these 2 terms. So, if I take the inner product of these 2 terms I 

will have g g and then f g f g twice. 

So, now, one of the g gs will cancel. So, I will have f times g into f times g divided by g 

times g and then I will have 2 cross terms. So, at this multiplied by this. So, f times g and 

then and then I will have the same thing here. So, I will have (Refer Time: 24:03) this is 

the plus sign and I have minus 2 f times g f times g divided by g times g. Notice that this 

particular choice of h ensured that these 2 terms the second and third terms are basically 

the same. So, what you get is f comma f? So, this is these 2 are the same. So, what I get 

is minus f comma g whole square divided by g comma g and this because it is a norm of 

h. So, this should be greater than or equal to 0, and that immediately implies f comma g 

whole square should be less than equal to f comma f, times g comma g and this is 

Schwarz inequality. 

So, we have proved the Schwarz inequality, next we will prove the triangle inequality. 

So, to prove the triangle inequality you take our let us look at our expression for the 

triangle inequality that we had here. So, this is the expression for the triangle inequality 

square root of f plus g plus g is less than this. Now if I square both sides then what I get 

is the following. So, f plus g f plus g; so, this on the left hand side, and on the right hand 

side we have to check is this less than or equal to f comma f. So, I have the norm of I 

have. So, if I square the right hand side I will get this term square plus this term square 

plus the cross term. 

So, f star f. So, f comma f plus g comma g plus twice square root of f f g g and. So, the 

question is this less than this now again you can open this. So, if you expand the left 

hand side you will get f comma f, g comma g, and twice g comma f. So, what you have 

to prove is that is twice f comma g, less than equal to twice square root of f f, g g; if this 

is true then you satisfy the triangle inequality. 

Now, clearly f comma g is less than equal to square root of f comma f times g comma g 

from Schwarz inequality (Refer Time: 27:24) is the stop here. So, we just showed this 

here. So, if you just take square root on both sides you will get exactly this expression. 

So, this implies that that this equality holds and it implies that this inequality also holds. 



So, therefore, this implies triangle inequality holds. So, what we are showed is that the 

Schwarz inequality and the triangle inequality they hold for any arbitrary inner product 

space, and we have restricted to real inner product, but you can do the corresponding for 

the Hilbert space also. So, I will stop here. 


