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Lecture - 35 

Today, we are going to study how symmetry is used in quantum mechanics. In order to 

do this, first we will revise some of the basic postulates of quantum mechanics and this 

will set us up for using symmetry arguments. 
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So, if you recall the basic postulates of quantum mechanics, it says that the state of the 

system is described by an object call the wave function, and it is denoted by psi, so psi is 

called the wave function. So, the state of the system is denoted by a wave function and 

this is the function of the coordinates of all the particles. Then you know that an 

observable, a physical observable corresponds to an operator. 

So, corresponding to every physical observable their exists an operator, now there are 

certain important features of this operator and this is what I want to focus on. Now, let us 

consider energy observable, so the operator is called the Hamiltonian operator. So, 

corresponding to the energy observable there is an operator called the Hamiltonian 

operator. 



Now an operator if you remember operator acts on a wave function, to give you some 

other wave function. So, psi prime of r, I would write the r coordinate, I will just say it 

acts on psi to give you psi prime, so an operator acts on a wave function to give you 

another wave function. Now, so certain functions called Eigen functions and these satisfy 

Hamiltonian operator operating on an Eigen function. So, this is a nth Eigen function of 

Hamiltonian operator, so it is an Eigen function of the Hamiltonian operator. 

So, psi n is the Eigen function of the Hamiltonian operator, so if it satisfies H times psi n, 

is equal to E n times psi n where, E n is a scalar, so it is just a number. This is a function 

and this is a number, so this is called the Eigen value equation. 
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Now it is possible that you can have degeneracies, so when we have degeneracies then 

we say that H times psi n 1 is equal to E n times psi n 1 and you have H times psi n 2 is 

equal to E n times psi n 2 and so on up to H times psi n k is equal to E n times psi n k. 

So, then you say that E n is k fold degenerate state. 

So, all these Eigen functions psi n 1 psi n 2, psi n 3, up to psi n k they all have the same 

Eigen value E n. And since there are k of them, you say E n is k fold degenerate state. 

Now, according to the postulates of quantum mechanics corresponding to every 

observable and let us take the example of the energy observable. 
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So, the according to the postulates of quantum mechanics, so Eigen values are real, so 

corresponding to a physical observable, your operator is hermitian. So, the Eigen values 

are real and Eigen functions can be chosen orthogonal, so I will just expand this a bit. So, 

your Eigen values for any hermitian operator, they have to be real Eigen values, the 

Eigen functions they can be chosen to be orthogonal. Now, I am using the word can be 

chosen that is to emphasize that if we have distinct Eigen values, then Eigen functions 

are orthogonal. 

So, if your Eigen values, so if you have two different Eigen values the corresponding 

functions will be orthogonal, so that is the first part. Now the second part is if we have 

degenerate states, we can them to be orthogonal, so in such a case where, the all these 

Eigen functions have the same Eigen value E n, You can choose different once to be 

orthogonal. Now, why do I say you can choose them to be orthogonal is it is fairly easy 

to see. The suppose psi 1 psi n 1 and psi n 2 are Eigen functions with Eigen value E n, so 

psi n and psi 2 are two different Eigen functions, there Eigen value is they have the same 

Eigen value E n. 

Now, the first thing is that clearly a times psi n 1, so if I multiply psi n by a where a is a 

scalar, so in any case if I take a times psi n it will have the same, it will be an Eigen 

function of H with Eigen value E n. So, is an Eigen function with Eigen value E n, this is 

very easy to see, so you can see this by saying that H times H operated on a psi n 1. Now 



the hermitian operator is a linear operator, so H operated on a times psi and is a times H 

operated on psi n psi n 1. 

And this is equal to a times E n psi n 1 is equal to E n times a psi n 1, so the Hamiltonian 

operated on a times psi n 1 is nothing but E n times k psi n 1; so therefore, a times psi n 1 

is an Eigen value with the same is an Eigen function with the same Eigen value. More 

over you can easily show that if I take combination of these functions, I will get an Eigen 

function. 

So, suppose I take psi is equal to c 1 psi n 1 plus c 2 psi n 2, now it is important that both 

these have the same Eigen values. So, psi n 1 and psi n 2 have the same Eigen value then 

this implies H times psi is equal to E n 1 times psi. So, the point is you can take a linear 

combination and you can extend this from two to many more Eigen functions. 

And this sort of relation will hold that if you had a set of Eigen functions with the same 

Eigen values. So, they should have the same Eigen value E n, they should not have 

distinct Eigen values, if they have distinct Eigen values they are orthogonal. If they are 

the same the n any linear combination of them is also an Eigen function with the same 

Eigen value. So, then the question how can we get Eigen functions, that are orthogonal 

and you can use an orthogonalization procedure. 
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So, we can always construct linear combinations of psi n k that are orthogonal to each 

other, so this is one of the postulates of quantum mechanics, that if you look at Eigen 

functions of any hermitian operator. If you look at Eigen values that are distinct, then the 

Eigen functions will always be orthogonal. If you look at the degenerate case where, you 

have a whole range of Eigen values whole range of Eigen function to choose. In that case 

then you can always select such Eigen functions that are orthogonal to each other. 

So, this is a very important point and this is one of the central postulates of quantum 

mechanics. So, orthogonal Eigen functions, so the net result is that your Eigen functions 

for a hermitian operator are orthogonal. And when you see the phrase orthogonal Eigen 

functions, you should immediately thing of basis. So, if you have a set of functions that 

are orthogonal you can use them as a basis, you can use them as a basis and you can 

represent any function as a linear combination of these orthogonal Eigen functions. 

So, suppose we have the functions are denoted by psi 1 psi 2 up to psi m. So, these are 

the orthogonal Eigen functions any state psi can be expressed as psi is equal to sum over 

i c i psi i. So, any state can be expressed as a linear combination of these basis functions. 

So, this is the meaning of a basis and so your Eigen of the Hamiltonian operator can be 

used as a basis for representing any wave function, so this is something that we are going 

to use in the treatment of symmetry. 
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Next let us talk about operators that commute, so what we are going to show is that if 2 

operators they commute with each other, then they can have all Eigen functions as 

common. This is another important idea that if two operators commute with each other, 

then we can choose their Eigen functions as common Eigen functions. So, we already 

saw that you could choose them to be orthogonal any one operator, but if you have two 

operators that commute then all there Eigen functions can be chosen as common Eigen 

functions. So, if we have operator 1 if operator 1 times operator 2 is equal to operator 2 

times operator 1. 

Then we can have a common set of Eigen functions, so I will say psi 1 psi 2 up to psi m, 

such that O 1 psi 1 is equal to lambda 1 psi 1 and operator 2 psi 2 is equal to lambda 2 

psi 2. So, you can choose a set of Eigen functions that are common to both the operators, 

so this is the other important idea. Now typically if you remember you choose when you 

are in the inlet us say the hydrogen atom problem, you looked at operators that 

commuted with the Hamiltonian operator. And we said that you can have a common 

Eigen function, those operators in the case of hydrogen atom where, the square angular 

momentum and the z component of the angular momentum. 

So, we said that the you can have common Eigen function of both these operators, so just 

give this example in hydrogen atom we had H comma L square operator is equal to H 

comma L z operator equal to 0. So, where this a commutator of H and L square that is H 

times L square minus L square times H. So, if H L square is equal to L square H if the 

operators commute and this is 0. So, this means H commutes with L square H commutes 

with L z and we also had L square L z commute with each other which is a trivial 

identity, so what we had is that we had all these identities. 
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And therefore, we choose Eigen functions common to all of all 3 operators for chosen, 

then these are 1 s, 2 s, 2 p, etcetera, 2 p, and so on. So, for example, if you take 1 s your I 

the you had a specific Eigen value of energy you had a specific Eigen value of L square 

and you had a specific Eigen value of L z. 

So, then we can choose our Eigen functions to be common Eigen functions of all the 3 

operators, so with this back ground we can start applying our ideas of symmetry that we 

have learnt so far in constructing wave functions. So, the so the important point is these 

linear combinations will be constructed by using wave functions that obey certain 

symmetry properties. 
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So, now let us mention one more thing that usually our Eigen functions are also 

normalized. So, they are normalized means the their integral with themselves is 0, so 

effectively we can write psi i star psi j integral d tau equal to delta i j. Delta I j is 0, if i 

not equal to j equal to 1, if i equal to j, so we use a orthonormal basis. So, we say that the 

basis is orthonormal. 

Typically, we construct our basis, so that it is orthonormal, we have already seen that 

you can choose them to be orthogonal and once they are orthogonal it is not hard to 

normalize each of them. So, if your wave functions are orthonormal, then they satisfy 

this property. Now suppose you write wave function psi as linear combination as of 

orthonormal wave function. 

If psi is normalized then psi star psi d tau equal to 1, so this implies integral. So, psi star 

as sum over j a j psi j star times sum over i a i psi i d tau, it is important to used to use 

different indices for both of these, because this is the sum of various terms this is also a 

sum of various terms and when you multiply them together you will get all kinds of cross 

terms and that is best done if you use different indices. 
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Now, you can expand this and you can write this as integral I write the sum over sum 

over j sum over i and write this as a j star a i times integral psi j star psi i d tau. So, this is 

this has to be equal to 1. 
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So, since your psi was normalized this has to be equal to 1 and this implies, so if this is 

has to be equal to 1 this you already know the value of this, because our psi’s are 

orthonormal this will this is just delta i j And a j star a i delta i j. 
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Now if you sum over j the only term that will appear is when j is equal to i. So, I can 

write this as sum over i a i star a i is equal to 1 or in other words you can write sum over 

i a i absolute value square equal to 1, so the condition that psi when you expand psi in an 

orthonormal basis then the coefficients of the expansion should square up to 1. So, the 

sum of squares of the coefficient should be equal to 1. 

So, this is another point that we will be using, so if you know all the coefficients are not 

completely independent of each other, if you know all expect one of them you can find 

the last one. Next we want to consider the effect of a symmetry operation x. So, what we 

want to say is that you have your symmetry operation x and you are going to operate this 

on the wave function. Now how do you our symmetry operations, if you remember they 

correspond to things like rotations about axis or reflections and so on. 

Now the question is how do you decide what happens when you operate a symmetry 

operation on a wave function. So, this can be represented as an operator x on the wave 

function psi, so the symmetry operation x has an operator that operator x operator and so 

corresponding to the symmetry operation there exists an operator x 1 the wave function. 

Now what can you say about this x operator and it turns out that you can say a few things 

and we will investigate that so what can we say about this operator x. 
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So, first of all symmetry operation physically what would you expect is symmetry 

operation to do, it will it will move the equivalent atoms. So, it tends to permutes 

equivalent atoms, so suppose I do suppose I say psi prime equal to r psi or x psi. So, then 

your psi prime will look a lot like psi, but only thing the there will be some permutation 

of atoms, some of the atoms will be permuted with each other. 

And the atoms that will be permitted will be equivalent atoms, so only the atoms that are 

equivalent will be permitted with each other. And then it becomes so then it is obvious 

that H times psi prime is equal to E times psi prime, where H psi is equal to E psi, so the 

point is that if you just permute equivalent atoms. So, just changing equivalent atoms 

will not change the energy. 

So, you will have the same energy as you had in the case where, you did not permit the 

equivalent atoms. So, this is an important point it is that permuting equivalent atoms is 

not going to change the energies, so this wave function should have the same Eigen 

values, same energy E. So, in other words H x is equal to x H, so H times psi prime psi 

prime is x psi, so H times x, x times psi. So, this is H times x times psi and this is psi 

prime, psi prime is x i. So, it is x times H times psi, so E times psi prime that is E times x 

psi is x operator on E psi. 

So, x that is x times H operator on psi, so or x comma H equal to 0. So, the operator 

corresponding to symmetry operation commutes with Hamiltonian, and so we are going 



to use this because this implies that now the Hamiltonian and your symmetry operator, 

they can have common Eigen functions. So, you can choose your wave functions to be 

those functions, so you can choose your Eigen functions of the Hamiltonian to be 

specifically, those that is that are also Eigen functions of the symmetry operator. 

Now, you can ask yourself what are the Eigen functions of this symmetry operator, so 

the Eigen functions of symmetry operator are typically those are functions that have the 

symmetry. So, the functions should have the symmetry of the molecule, so if you take 

your C H 4 molecule. Then your Eigen function corresponding to that molecule should 

have the symmetry of the molecule; that means, you swap the edges you permit the 

hydrogen’s and your wave function should remain the same and this should be reflected 

in the wave function for the methane molecule. 

So, essentially now we have a procedure in which we say which Eigen functions should 

be used to as appropriate Eigen functions for the Hamiltonian operator. And we say that 

we will use only those that have the symmetry of the molecule, so we will choose our 

Eigen functions to be those that are simultaneous Eigen functions of the Hamiltonian all 

the symmetry operations and those that are Eigen functions of all the symmetry 

operations of the group. 
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So, we have seen that the Eigen operator they can be chosen to be orthonormal Eigen 

functions and what this means is that if you have 2 Eigen functions with different Eigen 



values, then the wave then the functions will be a orthogonal, similarly if you even if you 

have a degenerate Eigen values, you can choose the wave functions to be orthonormal. 

Now we also know that the symmetry operation of the group they commute with 

commute with H. 

So, what that means, is that if you had a symmetry operation R you could represented by 

an operator and this operator can for a symmetry operation commutes with the 

Hamiltonian operator that means, R H equal to H R. What this means is physically it 

means that if you form a symmetry operation on a molecule. If you perform a symmetry 

operation on a molecule, then you do not change the energy levels of that state. 

So, if you take a molecule in a certain state and you operated by a symmetry operation, 

then you do not change the energy of that state. So, you reach another state with the same 

energy, so that is what it means and now suppose you take the non degenerate case, so in 

the non degenerate, we if a symmetry operation has to commute with the Hamiltonian. 

Then we can say that that R H psi i is equal to R operator on E psi i E psi i. 

And this is same as E times R psi i. So, the then what we conclude is that R times psi i is 

equal to plus or minus psi i, that is the only choice for R times psi. So, then the effect of 

the symmetry operation on the wave function has to be either R leaving it as it is or 

changing the sign of the wave function. So, this is something we can immediately see 

and this is impact shows that if we operate on psi on a wave function by on psi i by 

different or different operations each time we will get plus or minus psi i. So, some 

operations will give plus psi i some operations will give minus psi i. 
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So, the operations that give plus psi i, so chi of R equal to plus 1 if R psi i equal to psi i 

and chi of R equal to minus 1, if r psi i equal to minus psi i. Now this is how we define 

chi R I chi R and in fact it is not it is easy to see that chi did this provides a one 

dimensional representation of the group. And since it is a one dimensional representation 

it has to be irreducible, so what we are say and seen is that in the non degenerate case the 

effect of operating on the wave function by all the symmetry operations gives you these 

Eigen values which form a one dimensional representation of the group. 

Now we can prove this is in more general in general. So, we can generalize this is the 

non degenerate case. We can generalize it to the degenerate case and other cases, so the 

symmetry operations acting on wave functions on Eigen functions form an irreducible 

representation of the group. So, we will show this shortly we have already seen in the 

non degenerate case, we can easily see this. 

In fact, the wave what you would say is that if you have two operations and then the then 

there effect of the product of the operations just gives the product of the characters. So, 

that is what shows that this indeed is a valid representation, in general what you can say 

is that if you have the symmetry operations acting on Eigen functions. They form an 

irreducible representation of the group. 

Let us take an example k fold degenerate states, so you have h operator on psi i psi i j is 

equal to E i psi i j equal to 1 2 up to k. So, there are k such equations all of them have the 



same Eigen value E i. Now you ask yourself what will happen? If you operate by one of 

the symmetry operations on psi i j, psi i j is are orthonormal. Now suppose I say I operate 

by R on psi i j, so suppose I operate by a symmetry operation on psi i j. 

Now you know that whatever you get has to have the same Eigen value E i, so since R 

commutes with the Hamiltonian. When it operates on psi i j you will get another wave 

function, which also has the same Eigen value E i. And now if you want a wave function 

with Eigen value E i, you can just take it as a linear combination of these of all the all 

these wave functions. 

So, I can write it as sum over psi i j and I will just say R, so this is j equal to 1, so psi i l, l 

equal to 1 to k. And then there is a coefficient corresponding to each l, so let say r l j. So, 

I can just write it this way. So, I just wrote it as a linear combination of all the wave 

functions all these basis functions. So, it is just a linear combination of those, so if I 

choose a wave function like this then you can clearly see H times R psi i j is equal to E i 

psi i j. So, I will, so you can easily see this that x times R psi i j is E i times psi i j, 

because each of these Eigen functions has the same Eigen value E i. So, the energy Eigen 

value is not changed and this is a most general representation of this operation. 
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And now you instantly see this quantity r L j, this looks like an element of a matrix, it 

will be a k by k, k times k matrix. So, this is element of a k cross k matrix. And in fact 

this element is what we will call k dimensional representation of the operation r. 
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Now, if we had another operation S such that S times psi i j is equal to sum over l equal 

to 1 to k psi i l S l j and you had T operator on psi i j is equal to sum over l equal to 1to k 

psi i l t l j. So, if we had something like this, so then S i j is a matrix element of the k 

dimensional representation of psi i of S of operation S. Similarly, T l j is a matrix 

element of the matrix representation of T and this, so we can show that r l j, s l j, t l j are 

matrix elements of k cross k dimensional matrices corresponding to a k dimensional 

representation of the group. 

So, the point I want to make is that this is a way to get, so if you have k fold degenerate 

states then you can generate a k dimensional representation of the group using this 

procedure. Now suppose we had R times S equal to T. suppose the product of these 2 

operations was equal to T, so in the group R times S was equal to T. 

Then we must have and this is again not hard to work out, but I will just write the answer 

sum over l equal to 1 to k r i l l S l k S l j is equal to t I j. So, the matrix corresponding to 

this operator matrix corresponding to t should be a matrix product of these 2 matrices. 

So, if we had this for operations it should also be true for the matrices, in order for the 

matrices to be a valid representation for the group. And this is very easy to verify you 

can show this by using these equalities. 

So, the point we are point I want to make is that this is the way to generate a valid 

representation of this group and what we get is a k dimensional representation. So, this is 



the way to generate a k dimensional representation, we will look at a specific example of 

this next, so k dimensional representations and this you can get characters in this k 

dimensional representation character of R etcetera. 

So, you can generate the characters of each of the elements and this will be an irreducible 

representation. Now why this should this be an irreducible representation? it is not 

immediately obvious why this should be an irreducible representation, but in fact, if you 

look at it more closely. You can show that this since you have k fold degenerate states. 

So, the and the k Eigen functions are chosen to be orthonormal to each other, then you 

can show that this will indeed form an irreducible representation. So, let us take a 

specific example of this we look at the N H 3 molecule. 
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So, the N H 3 molecule this belongs to group C 3 v this has 1 C 3 axis. So, this is the C 3 

axis and there are 3 sigma planes containing the C 3 axis and one of the hydrogen. So, 

the elements of the group are E 2 C 3 and 3 sigma 3 sigma v, so there are 3 sigma v 

planes and you can easily work out, since the dimension of the group is 6. You can easily 

work out that there have to be 3 representations the, so there will be the completely 

symmetric representation. Then there will be 1 with this and there will be a two 

dimensional representation. 



So, will be 2 minus 1 0, so that is the that can be worked fairly easily, now what we will 

show is that our p x 2 p x and 2 p y are Eigen functions can be a basis for this irreducible 

representation for two dimensional irreducible representation. To show this what we will 

say we have to set up our coordinate systems. So, we will choose this as a z axis this and 

it will be centered as the at the center of this, it will be center on the nitrogen, so the 

origin will be on the nitrogen. This is the x this is the y and we will choose, so that one of 

the hydrogen’s lies in the x z plane. 

So, one of the 1 nitrogen is at the center one of the hydrogen’s is in the x z plane, the 

other 2 hydrogen’s are somewhere else and z axis is the C 3 axis. So, then any arbitrary 

point you can have a polar representation r theta phi, where theta is this angle, phi is this 

angle r theta phi. And now in this polar representation your psi of 2 p x wave function is 

equal to a radial part psi r times cos phi sin theta, so the angular part is cos phi times sin 

theta and the 2 p y will be a radial part times sin phi sin theta. 

So, 2 p x and 2 p y will have this form, we would not bother about the pre-factor of psi of 

r, because what we will see is that would not be affected. So, any symmetry operation 

will not change r, so we are not bothered about that r part. Now each of these operations, 

so E C 3 and sigma v if you notice if you do a C 3 rotation this point will rotate, but this 

angle theta with the z axis will not change. 

So, theta is the theta angle will not change, so even if this point rotates here the theta, but 

the phi angle will change as you change this C 3, similarly when you reflect about a 

plane containing the z axis. And either the one of the hydrogen atoms again you will find 

that theta is not changed, so theta is unaffected by symmetry operations. Now when you 

rotate operate by C 3. 

So, C 3 takes phi to phi plus 2 pi by 3, so C 3 is rotation about the z axis. So, this angle 

phi will change to phi plus 2 pi by 3 and it changes and then sigma v and let us take for 

convenience, let us take sigma v as the x z plane. So, if you take it as a x z plane when 

you reflect about this phi this H will come on this side, so or this phi will become minus 

phi, sigma v takes phi to minus phi. And this is all we need to derive the characters of 

this irreducible representation. So, we will see that in a minute. 
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So, let us look at what happens when C 3 acts on p x 2 p x, so when C 3 acts on 2 p x 

what you get is, so phi will be changed to phi plus 2 pi by 3. So, you can show this that 

will become psi of r cos phi plus 2 pi by 3 sin theta, remains the same. And if you work 

this out this will be a combination of cos phi into cos 2 pi by 3 plus sin phi into sin 2 pi 

by 3. 

So, this is psi r, so cos phi cos 2 pi by 3 is minus half plus or minus sin phi into root 3 by 

2 sin 2 pi by 3 is root 3 by 2 sin theta. So, this is equal to you can, so it is minus half p x 

minus root 3 by 2 p y. So, C 3 operating on 2 p x is this, C 3 operating on 2 p y this will 

be root 3 by 2 p x minus half p y. 

So, therefore, you can say that C 3 is represented by a matrix representation of C 3 is 

minus half minus root 3 by 2 root 3 by 2 minus half, so this is the two dimensional 

matrix representation of C 3 implies chi of C 3 is equal to minus 1. The trace of this 

minus 1, similarly you can show that sigma has a representation sigma will keep just 

change phi to minus phi. So, when phi changes to minus phi, you can see that 2 p x 

remains the same, but 2 p y changes sign. 
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So, this is sigma and this implies that chi of sigma equal to 0 sigma v, so and since this is 

the two dimensional representation clearly E is equal to 1 0 0 1 chi of E equal to 2. And 

so what you notice is that 2 minus 1 0 which is the same as the dimensional 

representation, so this is an irreducible representation. This is the two dimensional 

irreducible representation of this group. So, what we said is that p x and p y form a basis 

for a two dimensional irreducible representation of this group. 
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And if you remember in this column of the group, what you will have is x y x and y 

transform as p x and p y. So, they will be form a two dimensional irreducible 

representation and you also have R x and R y, so this is one of the things in this you have 

other things also, but this is one of the things and this is what we have shown using this 

representation. So, we can use the Eigen functions as to generate a two dimensional 

irreducible representation of this group. 


