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Lecture - 3 

So far, we have seen what we mean by vectors, we have seen vector spaces and we have 

found we have seen the very useful concept of linear independence. Which lead us to the 

concepts of basis and dimensionality and on the way we also looked at various ways of 

defining products of vectors. Now, next thing we will consider general operators and 

what we mean are operations on a vector. 
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So, we defined something called operators; these are objects, so operators on a vectors 

vector space see so, these are operators, these are objects that act on a vector to give 

another vector. So, this is a very general definition of an operator; it is in some cases the 

term operator is used to referred to operations on scalars that give vectors but, we will 

use this as the general starting point.  

For example, you could an operator that acts on a vector V to give another vector V 

prank. So, in general you it does something to one vector and it gives you another vector. 

So, you can think of it as you had V pointing in one direction when you operated by o 

you get another vector V prime which might point in some other direction might have a 



different length also. And these can be defined for any vector space, so you can define 

you operators for the space of functions, you can define operators for vectors in the 

coordinate space, and there is really no restriction for defining these operators. Let us 

take some examples of operators, so that the idea of what an operator is it will become 

clear.  

Notice that the operator is not a member of the vector space, the operator is not a vector, 

operator is some object that is not a member of the vector space but it acts on a member 

of the vector space to give another member. So, you should be very clear that operator 

does not belong to the vector space. Now let us look at some examples; let us take the 

first example; an operator acts on a vector acts on a vector V and you define it as you 

define this operator in the following way; it takes any vector V and to that vector it adds 

a constant vector V 0. So, this is an operator it acts on every vector to give a new vector 

and it is a valid operator. 

So, if V was if, so here this is a first example of an operator where it acts on a vector to 

give you a new vector and that vector is the original vector translated by some vector V 

0. So, for example, if V was pointing in this direction and V 0 is a constant vector that 

might be pointing in this direction then the action of the operator on V gives you a new 

vector that points in this direction this is V prime. So, operator takes V. 

To this new vector V prime pointing in that direction. So, this is the first example of an 

operator and in fact if you had some other vector pointing in say this direction then if you 

if you had some let us call this V 1 then the operator this operator will still translated by 

the same amount. So, you take this vector put it here and you will get this vector V 0 and 

it will translate it and. So, and. So, it will take V 1 to V 1 prime. 

So, this is what this translation operator does it always translates by the same vector. So, 

the same vector is. So, you add the same vector to the original vector. Second example, 

let us consider these are examples, let us consider operator acting on V minus V. So, this 

is sometimes called the inversion operator. So, it takes a vector and gives you vector of 

the same length and the same magnitude in the opposite direction. So, if you had a if you 

if you had vector like this if this was your original vector then V prime will be the same 

vector but, pointing in of the same length but, pointing in the opposite direction. So, it 

takes any vector and makes it point in the opposite direction. 



So, this is sometimes called the inversion operator this operator sometimes referred to as 

a translation operator because it translates a vector by a fixed vector this is called the 

inversion operator because it takes a vector and points it in the opposite direction. 

Another example of an operator is an operation that takes the vector and scales it by it 

lengths by the length of the vector. So, if you take vector and you divide it by the length 

of the vector then, you will get a unit vector in that direction.  

So, suppose you had your vector pointing this was your V then V prime will point in the 

same direction but, will have length 1 it will have a length of 1 and this is your V prime. 

So, this operator takes a vector and shrinks it to a vector of length 1 in the same direction 

pointing in the same direction. Let us look at some more examples, now this example 

will not write the explicit form in all these case we wrote the explicit form. In the next 

example, I will just mention it; I will just state it we will look at the explicit form later in 

this course when we are when we are dealing with rotations. So, here is an operator that 

acts on a vector and V prime it gives you a vector V prime where V prime is V rotated 

by some angle about some axis. 

So, if you had a for example, if your V was pointing in this direction if this was your 

direction of V and let us say you rotate by an angle of by an angle of theta about the 

about this axis the axis coming out of an axis perpendicular to V. So, you will get a new 

vector V prime in this direction. So, this is the rotation operation and the rotation 

operation is a very interesting operation, because it preserves length of the vector length 

of V and length of V prime are the same. So, if I take a vector rotate it by an angle theta 

about any axis I will preserve the length of the vector. Similarly, if I the rotation 

operation has the property that suppose I take two vectors and I rotate them then the 

angle between them is preserved in the even after the rotation. So, these are things that 

will be useful when we are dealing with various operations on vectors, and I will just 

mention them briefly here. So, far we have looked at operations on vectors and though I 

have not mentioned it explicitly.  

So, in this case we have been looking at vectors which are of the form that you seen 

before which is basically vectors in 3 dimensional Cartesian space. But, you can define 

similar operations even for vectors which are not of the 3 dimensional Cartesian space. 

So, you can define an operator. So, suppose you had the vector space where which 

consisted of functions of a single variable. So, then you can define operator acting on f of 



x and it will give you some other function g of x and one example of this is it could be d 

f by d x d f of x by d x. So, an operator acts on a function f of x to give you another 

function d f of x by d x or it could be or you could have an operator that acts on a 

function to give you a new function which is a square of this function.  

So, you can define many such operations and what I want to show you is that it is not 

just for vectors in 3 dimensional space operators can be defined for all kinds vectors in 

all kinds of spaces. So, we have looked at various examples of operators. 
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And now, we will just mention briefly that there are certain kinds of operators that have a 

special place in linear algebra and these are called the linear operators and linear operator 

is an operator that satisfies a property, that if you have the operator acting on a linear 

combination of two vectors. So, when this operator acts in a linear combination of two 

vectors.  

So, lambda 1 and lambda 2 are scalars V 1 and V 2 are vectors then. So, since V 1 and V 

2 are vectors this sum is also a vector and this whole thing is a vector and when this 

operator acts on this vector the result is the same as lambda 1 times operator acting on V 

1 plus lambda 2 times operator acting on V 2. So, this it is a linear operator in the sense it 

preserve the additive property and it is linear operator in the sense it preserves the scalar 



multiplication. So, operator acted on lambda 1 V 1 is just lambda 1 times operator acting 

on V 1.  

Similarly, operator acted on lambda 2 V 2 is just lambda 2 times operator acted on V 2 

and operator acted on a sum of two vectors is just the sum of the operator acted on each 

of the vectors. So, this such operators are called linear operators and these have a special 

place in linear algebra and we will again this will become more clear when we look at 

other examples of operators. So, I will just mention again just to give you an example of 

how these linear operators appear in linear operator suppose we had 3 D space and where 

a vector is a sum of is denoted by 3 components.  

So, now this operator acts on this vector V to give some other vector to give a new vector 

V prime and. So, if you say that V has coordinates x y z then this has coordinates x prime 

y prime z prime. So, in general what this operator does is it takes the 3 coordinates and 

gives you some new coordinates. So, it takes 3 coordinates x y z and gives you a set of 

new coordinates x prime y prime and z prime then.  

Now, this is what any operator does. So, what is special about a linear operator linear 

operator has to satisfy this relation and if you work it out you can show that, this implies 

that what the linear operator does is essentially take linear combinations of these of x y 

and z and give you x prime y prime and z prime. So, in other words if you have a if this 

operator is linear then we can express x prime as a linear combination of and say alpha 1 

and 1 x 1 plus alpha 2 x 2 alpha 3 x 3 similarly, you can write y prime as may be beta 1 x 

1plus beta 2 x 2 i meant to say x y and z. So, it is not x 1 x 2 x 3 it is x y z. So, it is alpha 

1 x plus alpha 2 y plus alpha 3z.  

Similarly, y prime is written as beta 1 x plus beta 2 y plus beta 3 z and z prime can be 

written as another linear combination. So, gamma 1 x gamma 2 y plus gamma 3 z where 

all the alpha 1 alpha 2 alpha 3 beta 1 beta 2 beta 3 gamma 1 gamma 2 gamma 3 are all 

scalars. So, all the alphas all the betas and all the gammas are scalars. So, if the operator 

is linear then you can show that all these x prime y prime, and z prime can be written in 

this form And you can also show the converse that suppose I can write x prime y prime 

and z prime in this form you can show that the operator is a linear operator and that is 

that is again not very difficult to show. So, the point is this, I mean, this will be a trailer 

to what we will do in matrices.  
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What we will do when we are doing matrices is that we will say that this x prime y prime 

and z prime are elements of a vector and of a vector in matrix prorogation is denoted by 

a column matrix. And then, this set of equations can be written a in matrix form as alpha 

1 alpha 2 alpha 3 beta 1 beta 2 3 and gamma 1 gamma 2 gamma 3 times x y z and now 

what we here this representation we identified this as a matrix and. So, this operator your 

operator o can be represented like a matrix. So, the most general linear operator.  

So, any linear operator can be expressed as a matrix the dimensionality of the matrix 

depends on the dimensionality of the vector space you are considering. So, since you 

consider 3 dimensional space the dimensionality of the matrix is 3 by 3. So, the point is 

any operator can be represented as a matrix any liner operator and this is something that 

we will use repeatedly whenever we are studying various kinds of operators. So, there is 

now I had briefly mentioned the operation where you rotate one vector to get a new 

vector.  
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So, you take a vector and rotate about some coordinate and to get a new vector. So, for 

example, if you have 3 dimensional space where you have x y and z coordinates now, if I 

had a vector that had coordinates x y z I can operate, I can consider an operation where I 

rotate about the rotate about the z axis by angle theta. So, what I will get is I will get a 

new vector the coordinates of that vector x prime y prime z prime. So, and you are 

rotating by angle theta and if you have this operator then good exercise would be to try to 

calculate what are the matrix elements of this rotation matrix. 

(Refer Slide Time: 19:22) 

 



So, the rotation operator is denoted as r z theta. So, we are rotating about the z axis by an 

angle theta therefore, I am using the symbol r z theta. And the point is you want to find 

the matrix elements of r z theta. So, find the matrix elements. So, what we need to do is 

we need to find x prime, y prime, and z prime in terms of the original x y and z in terms 

of the original x y and z. We need to find out what is x prime? What is y prime? And 

what is z prime? Now, in order to do this we need some basic coordinate geometry and 

we need to know how to calculate how to calculate this vector where you rotated about 

the z axis by angle theta. So, we need to find the x and y components of this vector. 

Now, first thing you will say is that if I rotate about the z axis the z component will not 

change and this is something that is intuitively obvious since z component is nothing but, 

the length along the z axis now since you are keeping the z axis the same and you are just 

rotating the vector about the z axis. So, the projection on to the z axis will not change 

and therefore, z prime will just be equal to z. So, in other words you can write this as 

zero times x plus zero times y plus z one times z. So, this is something that is that you 

will it is always true whenever you rotate about one axis that coordinate is not changed. 
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So, the next thing is to find out x prime and y prime in terms of x and y. So, in order to 

do that lets look at the let us just look at a two dimensional vector. So, if you have the x 

axis the y axis and you have a two dimensional vector. So, this is this vector has two 

components this is the x component this is the y component this is the vector x y. Now 



rotate it by an angle theta. So, if you rotate it by an angle theta then what you get this is 

your x prime component this is your y prime. So, you get a new vector x prime y prime.  

Now, we need to calculate what x prime and y prime are in terms of x and y and I will 

leave this as an exercise to you but, you can do some fairly simple coordinate geometry 

to get these lengths and what you will get is x prime is x cost theta plus y sin theta plus 0 

times z. 
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So, the 0 z should be something that is that will always work out. So, since x prime and y 

prime are independent of the z component since the z component is not changing and the 

z component is not affecting the values of x prime and y prime and this. So, the way the 

way you will work out is you need to find out this length and in order to find out that 

length, what will you do will you take this as this is the original angle and this is this 

angle is tan inverse y by x and what you will say is that this whole angle tan inverse y 

prime by x prime y prime by x prime which is this angle and that is that i can call it theta 

prime.  

So, this angle is tan inverse y prime by x prime and you can immediately that tan inverse 

y prime by x prime is tan inverse y by x plus theta. So, you immediately notice plus theta 

and second equation that we need is that is that x square plus y square is equal to x prime 

square plus y prime square since the since when you rotate this vector the length does not 



change. So, x square plus y square is equal to x prime square plus y prime square and if 

you use these two relations and you work out the details you can show that this works 

out to be theta cos theta it will be the other way round minus x sin theta plus y cos theta. 
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So, now you can define you can see that your r z as a function of theta is given by a 

matrix cos theta sin theta 0 minus sin theta cos theta 0 and 0 one. So, we expressed this 

operator which is rotation about z axis by an angle theta in terms of a matrix ok. So, 

there are many other operators that you will encounter in the remaining part of this 

course. 

And also, you will see the rotation operation appear multiple times but, what I would like 

to do next is to look at functions in involving vectors. So, we define vectors as objects 

that are in a vector space. Now, the question is can you have a function of a vector just as 

your function of x or function of y can you a function of a vector. 
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So, that will be next part of this of this lecture. So, the next topic we are going to discuss 

is vector functions now can you have a function of a vector. So, can we have a function 

of a vector now there are many ways to look at this and I will restrict for now, restrict to 

3 dimensional vector space. So, that is represented by a vector has 3 components x y and 

z. So, V is has these 3 components. 

So, we will restrict the discussion in the class to 3 dimensional vectors but, you can 

extend this concept to arbitrary vectors. So, what would be a function of a vector now 

there are two kinds of functions you can consider one is called scalar function or a scalar 

field and the other is called a vector function or a vector field. So, the idea is a following 

now when you consider when you consider normal functions of a single variable x. So, 

when you say f of x. 

Then, our idea is that you have you give a value of x to f and out you will get a scalar. 

So, f of x will be some scalar some value and this is the value of this function. So, it is 

the value of the function at x. So, that is the idea now here instead of feeding a scalar you 

are going to feed a vector and. So, when you feed a function to a vector there are two 

kinds of functions those functions that will give you a scalar and those functions that will 

give you a vector the function that give you a scalar are called scalar fields. So, scalar 

field takes a vector and gives me a scalar whereas, vector field will take a vector and 

give me another vector. So, it is a function of a vector which itself is a vector. 



So, now there are two questions that remained what do you mean by a function of a 

vector, what do you mean by a function of a vector and to answer this you just look at 

this representation of the vector. So, vector is just 3 components x y z. So, a function of a 

vector is just thought of as a function of x y and z. 
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So, any function of x y and z that is a scalar function is a scalar field. So, this is just a 

function of many variables. So, any function of many variables you can call it as scalar 

field. So, scalar field is just a function of many variables and these variables corresponds 

to the components of the vector and now the definition of vector function should also be 

obvious. 

So, vector function is the function of a vector. So, that means it is a function of x y z it is 

a function of x y z but, instead of getting a scalar what you get is a vector. So, the 

function itself has 3 components. So, the function has 3 components you can write the x 

component it has on a y component and it has a z component. So, both the argument of 

the function and the functions has 3 components. So, it takes a vector and gives you 

another vector and this vector is a function of that vector. So, these are the two kinds of 

functions that we will look at now let us look at some examples of scalar fields and 

vector fields.  
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So, scalar field examples I will first, I will just take a mathematical example and then, 

and then will try to give some physically motivated examples. So, a mathematical 

example of a scalar field would be is equal to x square y minus e to the x z plus z y cube 

any function it can be any function of x y z. So, that is the example of a scalar field. 

Now, you can also consider examples of scalar fields like this. So, second example x y. 

So, this is also function of x y z but, it is independent of z. So, this is also a general 

function of x y z but, this is independent of z. So, it need not have all the 3 components 

appear on the right hand side but, still it can be a function of x y z.  

Similarly, you can have only x or you can or you can just have a constant even a constant 

is also a scalar field. So, here you can have any arbitrary functions of x y and z and that 

will be a valid scalar field. So, now let us think of physical example of a scalar field. So, 

a physical example of a scalar field would be you have to think of some property that 

changes as you change the coordinate. So, as you change x y and z this property changes.  

So, let us take a simple example if he if we consider your space as this room then, you 

have the x and let me call this the x coordinate this is the y coordinate and this is the z 

coordinate. So, you have the space here and at any point here any point corresponds to 

some coordinates x y z. So, you have a point here you have a point here you have a point 

here all these correspond to different values of x y z now you can ask a question what is 



the what is the temperature at any point the temperature here will be different and the 

temperature here may be different in general.  

So, you can ask a question what is the temperature at each point and in general it may be 

different it may be the same if you are if your room has a constant temperature 

everywhere then it may be the same but, however because of various objects like this 

lights, and other and air conditioner, you will in general have different temperatures in 

different parts of the room. So, the temperature is a function of where you are in the 

room. 

 If you are here you will have a different temperature or at somewhere else you will have 

a different temperature. So, this is an example this is a physical example of a scalar field. 

So, temperature in a room you can you can easily construct many more examples I mean 

I do not need to consider this room I can just consider a container a container of water 

and I can look at the temperature in different parts of the container that would also be an 

example of a scalar field you can look at other objects you can ask what is the density? 

What is the density of air at different parts in the room and in general? 

They will be in general they may be different because there is some circulations due to 

the air conditioners the fans and the other objects and. So, the density in different parts 

may be slightly different and that is example of a scalar field. So, the important thing is 

that what you have is a scalar. So, temperature is a scalar and. So, and. So, if you ask 

what is the temperature in different regions you will get a scalar field. Next, we consider 

examples of vector field. 
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So, examples of vector field now the. So, let us write a mathematical example first. So, 

will say f vector which is a function of x y z has 3 components and the 3 components 

might be x y z i plus e to the e to the 12 x plus y times j plus let us say log 1 over x k 

now notice and I will put this in bracket notice that each of the components is a function 

of x y z and. So, each of the components is a function of x y z and that is an example of a 

scalar field. So, this is a mathematical example of a scalar field now the physical of a 

vector field, I am sorry. So, this is the mathematical example of a vector field, the 

physical example of a vector field would be seen the electric field. So, you can ask in this 

room what is the electric field at every point and electric field is a vector. So, it will point 

in some direction. So, may be if you are close to the light the electric field will point in 

one direction if you are somewhere else the electric field might point in some other 

direction it has both the direction and a magnitude. 

So, that is an example of a vector similarly, the magnetic field is another example of a 

vector field and in general there are many more examples that you can construct of scalar 

fields and vector fields and these are objects that you see in everyday life and these are 

not these are not simply obstruct objects you actually see them and you end up using 

them a lot also. So, far we have studied about vector fields and scalar fields and i have 

been saying that you know that mostly we focus on this 3-D 3 dimensional vector space 

and we have been using the coordinate system which is the Cartesian coordinate system 



but, you may be familiar that with other coordinate systems that we can use to define the 

same space. 
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So, the same three dimensional space can be expressed in other coordinates and we will 

look at two coordinates one is spherical polar coordinates and the other is called 

cylindrical polar coordinates. And both these coordinates are very widely used. 

And so, what I will do here is I will just give you the definitions of both these coordinate 

systems and just give you a hint on how you work out examples in these coordinate 

systems. So, the idea is instead of having instead of describing your vector in terms of 

these 3 coordinates x y z you define your vector 3 other coordinates r theta pi and you 

can either think of it as describing vectors or you can think of it as describing points in 

your space. So, if you have this as the x component y component z component and you 

have an arbitrary point here which corresponds to x y z, you can use this coordinate 

system. Where, x is the length from the x axis, y is the length from the y axis, z is the 

length from the z axis you can use this coordinate system or you can use another 

coordinate system called the spherical polar coordinates. So, in spherical polar 

coordinates any point is described by 3 by 3 scalars r theta and pi. So, what is r what is 

theta and what is pi. So, in this in this coordinate system r is r is this length. So, r is the 

length of this vector it is a scalar which is equal to the length of this vector theta is the 

angle with the z with the z axis and pi is the angle of the projection of this vector on to 



the x y plane with the x axis. So, this angle is pi. So, you take the vector you project it on 

to the x y plane and then you look at the angle with the x axis that is your pi angle now in 

this case you said that x y and z if you want the entire space they can go from minus 

infinity to plus infinity. So, then what are the limits for r theta and pi. 

So, we say minus infinity is less than x less than plus infinity similarly, for y similarly, 

for z now what about r theta pi what are the what are the limits for r theta and pi now r is 

a distance. So, wherever the point is the distance will always be a positive number. So, 

your distance can be any positive number 0 less than equal to r less than infinity where if 

your point is at the origin then the distance from the origin is 0.  

So, r is the distance from the origin and. So, it has to be a positive quantity but, you can 

go as far as you want if you want to cover the entire space you have to go to all distances 

and. So, r can be anywhere between 0 and infinity next question is what about theta now 

theta is the angle with the z with the z axis now the way theta is defined is that if you had 

a vector like this then you define this as the angle with the z axis. Now, suppose I take 

the same vector and I imagine I rotated along this cone. So, when I keep this point this 

fixed and i rotate it in a chronicle fashion now at these wherever you are here the angle 

with the z axis will be the angle inside the cone. 

So, it is angle of a side of the cone with the line passing right through the middle of the 

cone and this angle will be theta wherever you are on this cone. So, theta is defined in 

this way and. So, the limits of theta can be theta can be of when you have a vector that is 

very close to the z axis then theta will become zero. So, theta can go from 0 but, theta 

can only go when you go all the way to this end. So, the vector with respect to the z axis 

it can be all the way aligned this way or it can be aligned all the way in this direction.  

So, theta is always between 0 and pi. So, that is the limit of theta now what about pi is an 

angle in a plane. So, pi is basically this projection now this projection as this vector turns 

this projection will go all around and. So, it actually goes around the entire plane it goes 

around an angle of 2 pi. So, 0 less equal to pi or you can say less than because 2 pi is 

same as zero. So, in this case it will just be less than. So, these are the limits of limits of r 

theta and pi notice that theta is only between 0 and pi. So, even though it is an angle it is 

only between it is only defined between 0 and pi it can never be it can never be greater 

than pi.  



So, this defines a system called the spherical polar coordinate now we need to know how 

to convert from x y z to r theta pi and I will just give the equations that help you convert 

from one to the other. So, you say that r. So, first what we will do is we will we will 

express r theta and pi in terms of x y z. So, in terms of x y z r is x square plus y square 

plus z square under root of that because this is just the length of this vector length of this 

vector is just x square plus y square plus z square under root. Now, theta to in order to 

determine theta we see that we see that if this angle is theta then z is just r cos theta z is r 

cos theta. So, then theta can be written as cos inverse z divided by r and r is just square 

root of then similarly, pi we can immediately see that pi is this length is r sin theta.  

So, this z is r cos theta this length is r sin theta. So, then you can see that x is just r sin 

theta cos pi and y is r sin theta sin pi. So, then pi is just tan inverse y by x if you want 

you can also write this as you can write this as tan inverse tan inverse square root of x 

square plus y square divided by z. So, r sin theta is x square plus y square root of x, 

square plus y square, and r cos theta is z. So, tan inverse of x square plus y square by z is 

the same as cos inverse of z divided by square root of x square plus y square plus z 

square. So, now what we have done is we have written r theta and pi in terms of x y z 

you can you can write the other way also you can write x is equal to r sin theta cos pi y is 

equal to r sin theta sin pi and z equal to r cos theta. So, here I have expressed I have 

expressed x y z in terms of r theta pi here I have expressed r theta pi in terms of x y z. So, 

these equations will help you convert from one coordinate system to another.  
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Now, the next example, is something called the cylindrical polar coordinates and here 

you go from x y z to use a symbol rho theta z, I am deliberately using the symbol rho to 

differentiate it from this r. However, it is also something sometimes you also call this r. 

So, the idea of cylindrical coordinate system is a following if you had a point z and you 

had this so, then we will use 3 coordinates we will use the z coordinate as it is and then, 

we will take the projection on to the x y plane. So, this is your x coordinate this is your y 

coordinate.  

So, what is done is instead of using x and y you use this length which is rho and this 

angle which is called theta. So, you call this angle of the projection on to the x y plane 

with the x axis as theta and the length of this projection as rho and if you use if you do 

this you can easily show that that this cylindrical polar coordinates are defined in the 

following way. So, rho is equal to square root of x square plus y square. So, rho is a 

square root of x square plus y square then theta equal to tan inverse y by x and z is equal 

to z. So, you leave the z coordinate as it is you just play with the x y coordinates and that 

is what is called the cylindrical polar coordinates.  

So, and then you can also convert it in the other way you can write x is equal to rho cos 

theta y is equal to rho sin theta and z equal to z. So, these are two of the most common 

coordinate systems used and if you ask what is the limits you will immediately see that 0 

less than equal to rho less than infinity and as far as far as theta goes theta will be vary 

between 0 less than equal to 0 less than 2 pi and as far as z goes z still has a same limits 

minus infinity less than z less than infinity plus infinity. So, this completes the 

specification of the coordinate system and this both these coordinate systems are very 

widely used in all aspects of chemistry.  
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In fact, it is found that when you want to solve the quantum mechanical the time 

independent equation for the hydrogen atom. It is found that this coordinate system is the 

most useful whenever you are dealing with angular momentum in 3 dimensions it is this 

coordinate system that is most useful to solve that.  

So, however if you are looking at diatomic molecules sometimes this coordinate system 

turns out to be fairly useful. So, these are two different coordinate systems and you can 

immediately see that if I look at a function of x y z I can alternatively write it as a 

function of r theta pi or I can write it as a function of rho theta z. So, functions of x y z 

will map on to functions of r theta pi or rho theta z. So, in the next class what I want to 

do is to look at what is called as differentiation operators on vectors. So, we will start 

that and the in the next class where we where we try to take various scalar fields and 

vector fields and try to differentiate them with respect to a vector. So, that will be the 

topic of the next class. 

 


