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Lecture - 13 

Today’s class we will look at 2 examples of applications of all that we have learned so 

far in linear algebra, specially an application of matrix methods. The two applications 

that we will talk about today are Slater determinants and Huckle molecular orbital 

theory. Now, Slater determinant is the first application that we will talk about. 
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And Slater determinants are used to express wave functions of many electron systems, 

and by many electron we mean more than one electron. So, system with more than one 

electron, the wave function of that system is expressed in terms of Slater orbital’s in 

terms of Slater determinants. So, how does this work, so for this let us consider the case 

of a helium atom. So, the helium atom has 2 electrons, so the wave function of the 

helium atom the electronic wave function of the helium atom is a function of the 

coordinates of the both electron 1 and electron 2. 

So, this is the total electronic wave function and 1 is the coordinates, 1 and 2 are 

coordinates of electron. And when I say coordinates I mean both the spatial coordinate 

that is what where it is located in space and the spin coordinates and what it spin is. So, 

for example, and electron one could be located at r one with spin with spin alpha or it 



could be located in r 2 spin beta and so the coordinates of the electrons have both the 

spatial and the spin part. 

So, now in order to write the wave function of a helium of a many electron system the 

first approximation that we make is called the orbital approximation. So, the orbital 

approximation consists of saying that this wave function which is a function of both the 

coordinates can be written as a, product of coordinates of first electron and the 

coordinates of the second electron. So, in other words you can write here wave function 

of 1 and 2 as a product of wave functions for the first electron phi 1 of first electron phi 2 

of second electron. 

And so we say that each electrons stays in it is own orbital. So, electron 1 is in orbital 

corresponding to phi 1 electron 2 is in orbital corresponding to phi 2. And so this is the 

first approximation this is called the orbital approximation. Now, these need not be the 

same as the orbital’s of the hydrogen atom but this is some orbital some atomic orbital’s 

of that particular species of helium atom in this case. Now, there is a fundamental 

principle that says that your wave function psi of 1 2 should be anti symmetric to 

permutation of 1 and 2. 

So, this is the total wave function has to satisfy the property that psi of 1 2 equal to 

minus si of 2 1 this has to do with the fact that the electrons are what are called as 

fermions or spin half particles. And all spin half particles have to be anti symmetric to 

interchange of the 2 particles. So, this is the fundamental property of the system and it is 

because we are looking at electrons that interchange of electrons should give the same 

wave function with the opposite sign. 

Now, what we are going to do is to we are going to try to construct various orbitals that 

satisfy this property or various wave functions that satisfy this property. Now, be further 

more we write this total wave function of 1 electron. So, the single electron wave 

function phi 1 of 1 this is factored into a spatial part and a spin part. So, I will call it psi 

spatial times phi spin this is the and the spatial coordinate of one is r 1 and the spin 

coordinate I will call it s 1. 
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So, this is written in this form and. So, your total wave function your psi of 1 2 can be 

written as psi spatial of 1 2 of rather of r 1 and r 2 times psi spin of s 1 s 2, these are the 

spin coordinates. So, just as you have spatial coordinates, you have spin coordinates for 

each of the electrons. And it is this total wave function that should satisfy this anti 

symmetric property, so let us start with this helium atom. Now, since we can factor the 

orbital into a spatial and a spin part. 

We can say that the spin functions spin functions are denoted by there are only 2 

possibilities for these spin functions. The 2 possibilities are alpha and beta. So, the spin 

function of any electron can either be alpha or beta these are the 2 spin functions 

corresponding to you can think of them as spin up and spin down. So, there are only 2 

possibilities for the spin functions. So, now if you look at the total spin of the system of 

the 2 electron system, now there are various possibilities. So, for example, you could 

have the first electron in alpha. 

So, the first electron is in spin state alpha and the second electron is also in spin state 

alpha. Now, both the electrons are in spin state alpha alternatively you could have both 

the electrons in spin says beta or you could have one electron in alpha and the other 

electron in beta. So, you could have electron one in alpha or and electron 2 in beta but 

because the electrons are in distinguishable this is should be the same as electron 2 in 

alpha and electron one in beta. 



So, these 2 should or actually you cannot distinguish between them so this sort of 

representation is not valid as a representation of the spin function of the 2 electron 

system. And you have to consider either a linear combination of this form or a linear 

combination of this form. And this wave this function is symmetric to interchange of s 1 

and s 2. So, if switch s 1 and s 2. This remains the same whereas, here if I switch s 1 and 

s 2 this change as sign. 

So, this is anti symmetric to exchange of s 1 and s 2. What we mean by anti symmetric is 

that if I change s 1 and s 2 then this whole wave function will change s 2 beta s 1 minus 

alpha s 1 beta s 2 that is negative of this wave function. Whereas, these 3 wave functions 

if I change s 1 and s 2 they are symmetric s 1 and s 2. And we could not use this as a 

wave function we could not use this as a valid wave function because it is neither 

symmetric now anti symmetric to exchange of s 1 and s 2. 

And so we have to construct a we have to construct 2 combinations one which was 

symmetric and the other which is anti symmetric. So, these are the 4 allowed spin 

functions. So, the allowed spin functions are these 4, so if you say psi spin of s 1 s 2 can 

take any of these values. So, these are allowed values for psi spin of s 1 and s 2. 

So, now what we will do is we use this in a combination with a spatial wave function. 

Now, since the product of the spatial times a spin part has to be anti symmetric. Since, 

this product has to be anti symmetric it follows that in if you take a spin part which is 

symmetric then the spatial part has to be anti symmetric. And if you take a spin part to be 

anti symmetric the spatial part has to be symmetric. So, since this product has to be 

symmetric; that means, one of these has to be anti symmetric the other has to be 

symmetric. 
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Now, there are 3 choices of taking symmetric spin part, spin functions and there is only 

one choice of an anti symmetric spin function. So, let us go and try to write the spatial 

part now, for helium atom in the you have 2 electrons you know that the ground state 

corresponds to ground state both electrons are in is orbital. And since both the electrons 

are in the same spatial orbital’s there for both electrons are the same. 

So, the spatial orbital, so you can write psi spatial of r 1 r 2 is equal to 1 s of r 1 times 1 

of r 2. So, the spatial parts are the same and so the since each electron is in the 1 s 

orbital. So, the wave function in the orbital approximation can be written of a product of 

wave functions. This is 1 s for r 1 this is 1 s for r 2. Now, if both the electrons are in the 

same spatial orbital since, the product of the wave functions has to be anti symmetric you 

can immediately see that this is the only allowed spin function. 

So, only one spin function is allowed that is the anti symmetric spin function. So, you 

can immediately write that psi of 1 2 is equal to 1 s of r 1 1 s of r 2 into 1 by root 2 alpha 

of s 1 beta of s 2 minus alpha of s 2 beta of s 1. You can immediately write this form and 

you can write this in a slightly different form. Suppose I take the 1 s inside I can write 

this as 1 by root 2 1 s of r 1 into alpha r 1 times 1 s of r 2 beta s 2 alpha s 1 minus I will 

put these in brackets and it will be clear y 1 s of r 2 alpha s 2 times 1 s r 1 beta s 1. 

So, you can write it in this form and notice that this depends only on electron 1 this 

depends only on coordinates of electron 1. So, I can write this as 1 s alpha of 1 so I just 



denote this is the spin orbital of electron 1. So, this says that the spatial orbital is 1 s and 

the spin orbital is alpha. So, 1 s alpha of 1 I can write this as 1 s beta of 2 minus 1 s alpha 

of 2, 1 s beta of 1 and this whole thing times 1 by root 2. 

And this can be written as 1 by root 2 1 s alpha 1 s beta alpha 1 s beta hmm sorry I will 

put it slightly differently I will write 1 s alpha 1 s alpha 1 s beta 1 s beta and. So, the first 

row I have 1 s alpha and the second row I have 1 s beta and what I am going to put here 

is in the first column I will put 1 second column I will put 2. So, it is 1 s alpha 1 times so 

this determinant gives me the allowed wave function. This determinant is called a Slater 

determinant. 

So, the Slater determinant notice that I put all the spin orbital’s on the rows and I put the 

coordinates of the electron on the columns. So, the first column corresponds to 

coordinates of electron 1 the second column corresponds to coordinates of electron 2. 

Now, writing the wave function in the Slater determinant form is very useful and it is it 

ensures that. 

If I switch 1 and 2 if I switch the coordinates of 1 and 2 it is like switching 2 rows of a 

determinant it says exactly equivalent to switching 2 rows of a determinant and. So, 

when I interchange one and 2 then I am changing the sign of the determinant. So, the 

Slater determinant it ensures that your wave function is anti symmetric. So, it ensures 

that the wave function that you have is anti symmetric, and you can do this even for you 

know this need not be it can be if both the electrons. 

So, I can do this even for other this does not need to be 1 s alpha and 1 s beta, it can be 1 

alpha and 2 s beta. So, you can do this for more complicated systems rather than just 

helium atom. So, it ensures because of the nature of this of these determinants it ensures 

that it is that the total wave function will be anti symmetric. And the reason it will be anti 

symmetric is that switching the coordinates of any 2 electrons is like changing 2 rows of 

the determinant. 

So, this can be extended to a many electron system and you can easily show how to 

extend this to a to a many electron system and that is what we will do next. So, 

incidentally you notice that the moment we said, that the spatial parts of the 2 electrons 

have to are identical. When the 2 electrons are in the same spatial orbital because of the 

anti symmetric condition there spins have to be different. So, having 2 electron in the in 



the same spatial orbital ensures that the spins are different and this is an illustration of 

palsies exclusion principle. 

 (Refer Slide Time: 20:37) 

 

So, palsies exclusion principle says that if 2 electrons are in the same orbital then their 

spins have to be opposite and so these 2 electrons are in the same spatial orbital and spins 

are opposite. And that is the only allowed state, only allowed wave function. Now, 

suppose you had a many electron system how do you write this so suppose you had psi 

of 1 2 up to n and for convenience lets assume that this is a closed shell system. 

So, closed shell system; that means, n is an even number and all the electrons are paired 

in their orbital’s. So, in this case what you have is you have various you can write this 

determinant in this form one over square root of N factorial. That is the normalization 

constant and then if the various orbital’s corresponds to phi 1 alpha phi 1 beta phi 2 alpha 

phi 2 beta all the way up to phi n by 2 alpha phi n by 2 beta. So, all the electrons are 

paired in their respective orbital’s and these are the various orbital’s. So, we can write 

the Slater determinant very easily. So, you write all the orbital’s in this way similarly, 

you will write the same orbital’s beta and. So, on all the way up to you will write it n 

times. Now, we have to write the various arguments you have to write the various what 

is the, what is it a function of... 

So, we have to fill in these things and following the prescription for the Slater 

determinant on the first column I will put 1 corresponding to electron 1. Second column I 



will put 2 corresponding to electron 2 and. So, on I will go all the way in the n th column 

I will put n corresponding to electron n. So, there are n electrons in n by 2 orbital’s. So, 

there are n electrons and the total number of orbital’s is n by 2 and. So, you follow this 

prescription and you can write the wave function. 

And this is anti symmetric to interchange of any 2 electrons so I can switch one and 2 I 

will get it will be anti symmetric I can switch one and n again the determinant will 

change sign. So, if I change any 2 rows of the determinant. Then the determinant 

changes sign and the way we have written the Slater determinant we have ensured that 

the coordinates of only one electron appear in one column coordinates of only one 

electron appear in any column. 

And that ensures that switching 2 columns is like changing the coordinates of 2 

electrons. So, this way of writing determinant is extremely useful for closed shell 

systems and it is not just atoms for which this is useful this is also useful for molecules 

with which have a closed shell configuration. And so this is a very simple and very 

useful application of this idea of determinants. The next application that we will do is 

what is called as Huckle molecular orbital theory. 

And this is another application of determinants and in fact, in general of matrix methods 

and linear algebra. Now, in order to introduce the Huckle molecular orbital theory I will 

first tell about molecular orbital theory and in particular about what is called as linear 

combination of atomic orbital’s leading to molecular orbital’s. So, if you have a 

molecule suppose you have molecule a Molecule has many electrons a molecule 

typically has many electrons and So, you have you have coordinates 1 2 or to some 

number there are n electrons. 
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So, this is a molecular wave function. So, this is the wave function of the molecule and 

in particular I should say this is the electronic wave function of the molecule. And the 

first thing you do is to is to write this as a product of one electron wave functions. So, 

you write this as a product of n and these are single electron wave functions these are 

called orbital’s. And in particular these are called molecular orbital’s. So, this is the 

under the orbital approximation. 

So, we use the approximation that the total wave function can be written as a product of 

these orbital’s or single electron wave functions. Now, the molecular orbital’s are 

actually incredibly complicated objects to calculate and what is typically done is the 

procedure called linear combination of atomic orbital’s it is called LCAO hyphen MO. 

So, Linear Combination of Atomic Orbital’s giving Molecular Orbital’s. And this is 

implemented in something called a variational procedure. 
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So, what are the main steps in this procedure so your molecular orbital your I will call 

this psi M o. So, your molecular orbital psi M o is written as a sum of c i phi i. This is a 

coordinate of the electron and I am restricting only to the spatial part. So, restrict only to 

the spatial part. So, the molecular orbital is a function of coordinates of one electron I 

will just call that coordinate r and that is written as a linear combination of various 

functions. 

These are various function and so it is written as linear combination of various function. 

So, you can write this as c phi 1 of r plus c 2 phi 2 of r plus and so on. So, you are 

summing over r. So, this is the basic idea that you write a molecular orbital as a linear 

combination of various functions and these functions we choose as atomic orbital’s. So, 

these functions are chosen as the atomic orbital’s and typically when you have a bond 

then you choose them as the orbital’s of the atoms corresponding to the produce the 

bonds. 

So, if you have a bond between 2 hydrogen atoms you choose these to be atomic 

orbital’s center on the 2 hydrogen atoms. So, for example, if you have H 2 so I can write 

this as the first atom I show as A second atom is B and if you have an the if you have an 

electron whose coordinate is r. Then the wave function of this electron in a it is in a 

molecular orbital and it is wave function is written as c 1. Now, corresponding to the 

atomic orbital’s at A. So, the atomic orbital’s these are all different atoms. 



So, this is linear combination of atomic orbital’s on different atoms. So, for a hydrogen 

molecule the lowest energy state will correspond to overlap between 1 s of A and 1 s of 

B so you write this as c 1 times 1 is A of r plus c 2 1 s B of r. So, this is this basically 

corresponds to A 1 s orbital centered at A. So, it is a 1 s orbital assuming that the nucleus 

is at A. So, and this corresponds to A 1 s orbital assuming that the nucleus is at B. So, 

assuming that the nucleus is at B what does 1 s look like and what is the value of that at 

r. 

So, this is how you write a molecular orbital wave function. So, you notice that these are 

this is a sum of atomic orbital’s there is only coordinate r because this is a single electron 

wave function and so the coordinate of that electron appears. So, there is only one 

coordinate r that appears but these atomic orbital’s are centered on different atoms. So, 1 

s centered at A will depend on will be some constant. So, this will be some constant 

times e to the minus z times I will say r A divided by a naught a naught is a bore radius. 

So, r A is the distance of r from A. So, this is r A and if this is r B so the other similarly, 

this will be c times e to the minus z r B by a 0. So, they are different I mean they are 

since they are centered at different atoms their resulting function will be different. So, 

this will depend on this distance whereas, that will depend on the 1 s A will depend on 

this distance 1 s B will depend on this distance. So, this is the general linear combination 

of atomic orbital procedure. 

Now, the question is how do you calculate your c 1 how do you go about calculating you 

are your c 1 and c 2 what is the choice of c 1 and c 2 that you should take and the choice 

of c 1 and c 2 is given by something called a variational procedures. So, the variational 

Procedure will give you choice of c 1 and c 2. So, the choice of c 1 and c 2 is given by a 

variational procedure. 
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So, how does this work. So, this is based on something called a variational theorem that 

says that if you calculate the energy of any trial wave function then it is always greater 

than or equal to the true ground state wave function. So, then the best choice of c1 and c 

2 will be that choice of c 1 and c 2 that that gives you the minimum energy. So, the 

choice of c 1 and c 2 that gives the lowest energy turns out to be best choice of c 1 and c 

2. 

So, we calculate the energy of this of an electron on this molecular orbital and. In fact, 

you have to calculate the expectation value of energy. The expectation value of energy is 

given by psi M o of r. Hamiltonian operator psi M o or r integral d r divided by psi M o 

or r psi star psi M o of r. So, you just this is the definition of the expectation value of 

energy and. So, you go about you go ahead and you calculate this now wherever I have 

psi M o. 

I substitute this value and if I go ahead and do that then I will get here I have c 1 s A plus 

c 2 1 s B. So, I will have c 1 star 1 s A star of r 1 of r plus c 2 star 1 s B star of r. So, that 

is the psi star times Hamiltonian operated on c 1 s A or plus c 2 1 s B r d r divided by the 

same thing as the numerator with out this H. So, I will just write it as d r. So, it is exactly 

the same as the numerator without this H. Now, we have 4 terms in the numerator and 4 

terms in the denominator. 



The numerator will consists of terms of the form if I exclude the constants it will contain 

terms like 1 s A of r h 1 s A of r integral d r. So, this term we call it as H A A it is 

independent of r it is just some number we call this H A A, similarly if you have 1 s A 

and 1 s B we will call it H A B so if you had 1 s A h 1 s B we will it h A B 1 s B H 1 s A 

we will call it H B A. So, 1 s A 1 is B star or H 1 s A r d r. This is H B A and this is a 

same as H A B which is 1 s star of r H 1 s B of r. 

So, because your Hamiltonian is a hermitian operator it satisfies this property similarly, 

we can define H B B also. So, then your e your expression for e at least the numerator 

part we can write in terms of H A A H B B and H A B for the denominator we will use 

exactly as similar notation but if there is no H we will it s A A. 
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So, if you had 1 s A star r S A B if you had 1 S A and 1 S A that is S A A which is just 1. 

So, r equal to 1 similarly, if you had 1 s B it will be 1. So, now you can write your 

expectation value of e as c 1 star. So, the first term will be c 1 star c 1 1 s A H 1 s A. So, 

that is c 1 c 1 square H A A the second term will be c 2 square H B B and you will have 

a term that 2 well I will write it as 2 c one c 2. So, you have c 1 star c 2 and c 2 star c 1 

and if c 1 star c 2 is the same as c 2 star c 1 so you can write it as 2 c 1 c 2 H A B. 

So, let us for simplicity I have assumed that c 1 and c 2 are both real. So, if c 1 and c 2 

are real I can write it in this form divided by, now in the denominator, I will get c 1 

square plus c 2 square plus 2 c 1 c 2 S, S A B I am just denoting as S. So, the variational 



theorem says that this energy should be minimum. So, you should choose your c 1 and c 

2 such that this energy is minimum. So, in other words your dou e by dou c 1 equal to 0. 

And if you calculate dou e by dou c 1, so we will go ahead and do this, we will just call 

this some numerator divided by denominator we will call this denominator and this as 

numerator. So, you can use the usual rule for differentiation and you can write this as 

denominator into derivative with respect to c 1 of this is 2 c 1 H A A and you have c 1 

here also, you have plus 2 c 2 H A B minus numerator into derivative of denominator in 

this case will just be 2 c 1 plus 2 c 2 S. 

Divided by denominator square and what I can do is I can take 1 of the square of the 

denominator up I will take. So, I will get 2 c 1 H A A plus 2 c 2 H A B and then I have a 

n by d is nothing but this E, E times I will have 2 c 1 plus 2 c 2 s divided by 

denominator. And if this has to be equal to 0 then basically you will say that this 

numerator has to be has to be equal to 0. So, this has to equal 0. So, if this has to equal 0 

I can write this as c 1 times H A A minus e plus c 2 times H A B. 
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Minus E S equal to 0. So, I can write this in this form so I cancel the 2 I cancel the 

denominator. So, I have c 1 times H A A minus E and I have c 2 times H A B minus e 

times s and if you do the same for dou e by dou c 2 what you will get is the following 

you will get c 1 times H A B minus E s plus c 2 times H B B minus E equal to 0. So, if 

you do the same for dou e by dou c 2 you will get this equation below. Now, you have 2 



equations and you have 2 unknowns of c 1 and c 2 but the right hand side of both the 

equations is 0. 

Now, this equations have a trivial solutions c 1 equal to c 2 equal to 0. So, if I put c 1 and 

c 2 as both 0 then I satisfy this equation but that is not really a useful solution because c 

1 equal to c 2 equal to 0 means your wave function is 0 and there are no electrons. So, 

non trivial solutions. So, the condition for non trivial solution is that this determinant the 

secular determinant equal to H B B times E as to equal to 0. So, the condition for non 

trivial solution is that this determinant has to equal 0. 

Now, this gives a simple so if you go ahead and multiply out this determinant what you 

will get it is a quadratic equation in E. So, you will get this into this minus this into this. 

So, minus H A B S the whole thing square equal to 0. So, this is a quadratic equation in 

E in expectation value of E and if you solve this you will get the expression E is equal to 

you will 2 solutions. So, the 2 solutions are E plus and E minus and E plus and E minus 

are related by this way. So, this E A plus or minus. 

So, let us go work this out so if you take this you will get E square and from here you 

have a E square S square. So, E square into 1 minus S square plus E and the terms 

containing E are given by. So, you have a minus H B B minus H A A and you have. So, 

you have minus H B B minus H A A minus now in this case will have plus twice H A B 

s. So, these are the terms multiplying E and then the terms that do not have any E are 

given by, so plus H B B. 

So, you have one term H A A H B B and then from here you will get H A B square. So, 

minus H A B square equal to 0. So, this is a quadratic in E and you can solve this to write 

the value of E now we would not do this in detail but you can solve this and you will get 

2 values for E we will take this for the specific case when. In this case since both the 

atomic orbital’s were one s orbital’s. So, H A A equal to H B B. 
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So, in the case H A A equal to H B B and we will just call this E A. So, if H A A equal to 

H B B equal to E A then you can write E there are 2 solutions plus and minus solutions. 

And this is given by E A plus minus H A B divided by 1 S. So, there are 2 solutions and 

the 2 solutions are related this way so in other words you can write E plus is E A plus H 

A B divided by 1 plus S and E minus E A minus H A B divided by 1 minus S. Now, 

usually S depending on the sign of s one of these is lower and the other is higher. 

And so depending on the sign of S and H A B one of these is higher or lower. So, now 

what Huckle has done was to use this molecular orbital theory and in a very creative way 

to describe phi conjugation in automatic systems. So, now we will see an application of 

this in what is called as Huckle molecular orbital theory. Molecular orbital theory and 

this is used to describe phi conjugation so systems that have phi conjugation. 

So, this Huckle molecular orbital theory is used to describe these systems. So, in Huckle 

molecular orbital theory you restrict to phi molecular orbital’s. So, for example, if you 

have butadiene so you have a phi conjugated system now Huckle molecular orbital 

theory gives a simple way to calculate the energies of the phi molecular orbital’s of the 

only the phi molecular orbital’s not the sigma orbital’s. And these are actually simply 

related to the highest occupied molecular orbital’s. 

So, that is a reason why Huckle molecular orbital theory is so useful. So, in order to see 

how to do Huckle molecular orbital theory, there are just 2 ingredients that we need. First 



is we need to write the secular determinant for a system so in Huckle molecular orbital 

theory. You write various atomic orbital’s centered at each of the atoms. So, if you call it 

1 2 3 4 atoms you have atomic orbital’s centered at each of these atoms. 
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And if you follow the molecular orbital prescription you can write a wave function and 

you can write the secular determinant. So, following the molecular orbital theory you 

write the secular determinant. So, for example, if you have butadiene one 3 butadiene 

you will write as H I will say 1 1 minus E H 1 2 minus E S 1 2 H 1 3 minus E S 1 3 H 1 

4 minus E S 1 4 and these are S is a overlap of the phi atomic orbital’s of 1 and 4. 

So similarly, the second row will be H 2 1 which is same as H 1 2 minus E S 1 2 the 

second row second column will be H 2 2 minus E H 2 3 minus E S 2 3 H 2 4 minus E S 2 

4. This is H 1 3 minus E S 1 3 H 2 3 minus E S 2 3 H 3 3 minus E H 3 4 E S 3 and this 

will be H 1 4 minus E S 1 4 H 2 4 minus E S 2 4 H 3 4 minus E S 3 4 and finally, H 4 4 

minus E. So, notice that the 2 all off diagonal elements are identical in this phicture and 

this has to be equal to 0. 

So, you said this equal to 0 and you get some polynomial in E and you solve for the 

energy now in huckel molecular orbital theory. So, huckel approximations H 1 1 equal to 

H 2 2 equal to H 3 3 equal to H 4 4 equal to alpha and H i j equal to beta if i and j are 

bonded. So, 1 and 2 H 1 2 will be beta and equal to 0 otherwise but H 1 3 because 1 and 

3 are not bonded will be 0 and then S i j equal to 0. So, S i j is always 0. 
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So, this was the simple basis of Huckel with this simple approximation this determinant 

simplifies to it can be written as alpha minus E beta 0 0 beta alpha minus E beta 0 0 beta 

alpha minus E beta 0 0 beta alpha minus E. And this will be equal to 0. So, notice that 

alpha minus E along the diagonals and beta is just next to the diagonals you have this 

beta. So, everywhere else you have 0. And this theory can be extended to much larger 

systems I just took 1 3, but adiene, but you could extend it to benzene, you could extend 

it to other conjugated touelenes. 

And this works and so what you can do is you can calculate E so if you said this E equal 

to 0 you will get a forth order polynomial in E and you can easily calculate this and you 

can show that E is equal to alpha. So, it has 4 values, one value is alpha plus 1 point 6 2 

beta the other is, alpha plus 0 point 6 2 beta, alpha minus 0 point 6 2 beta, alpha minus 1 

point 6 2 beta so you get 4 values. Now, it turns out that beta is negative for this system. 

So, this is the lowest energy. 

And this is a highest energy. Now, what is so interesting about these values is the 

following now butadiene has four electrons. So, 2 of them will have will be will be in the 

orbital corresponding to this and 2 of them will be in the orbital corresponding to this. 

So, the total energy is equal to twice alpha plus 1 point 6 2 beta plus twice alpha plus 0 

point 6 2 beta this is equal to 4 alpha plus 4 point 4 8 beta. This will come out to this 



value now, this 4 point 4 8 is actually quite interesting and the way to understand. Why 

this is. So, interesting is a following remember beta is negative. 
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To see the significant of this 4 point 4 8 you ask yourself what will happen if you just 

had ethylene. And if you do the calculation for ethylene you will get the lowest energy is 

alpha plus beta this is lowest. So, you do the same calculation you will get you will have 

only this term. So, you can have alpha plus beta or alpha minus beta and the lower 

energy corresponds to alpha plus beta. So, if you had 2 phi bonds the energy if you had if 

you just had 2 phi bonds then the energy would have been 4 alpha plus 4 beta. 

So, this energy is actually is greater than 4 alpha plus 4 point 4 eight beta so; that means, 

the energy of butadiene is lower than that of 2 separated phi bonds. So, if you had 2. 

Separated phi bonds the energy would have been 4 point 4 8 beta but this is lower than 2 

separated phi bonds. So, it is not as though so this would have energy of 4 point 4 8 

whereas, in this case because the electrons are delocalized there is some delocalization 

and that allows you to have an additional lower energy. 

So, the difference in these 2 is 0 point 4 8 beta this is the called the delocalization 

energy. So, Huckel molecular orbital theory gives you a simple way to see this idea of 

delocalization and this delocalization energy or sometimes it is even called resonance 

energy, and you can take this one step further you can calculate all kinds of atoms for 

example, you can do for benzene this versus where the electrons are truly delocalized. 



And in this case you will get a stabilization of 2 beta. And so benzene has a very large 

delocalization energy. So, this is a simple application of the idea of determinant and 

linear algebra and we will this completes the linear algebra part of this course and 

starting from the next lecture we will start differential equations. 


