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Problem 11: 

In a system of weakly interacting particles, in equilibrium at temperature T K, each particle 

has access to two states with energy difference ε2 – ε1 = 0.1 eV. At what temperature will one 

third of particles be found to have energy ε2?  

Rework the above problem by considering the ε2 state is doubly degenerate.  

Solution: 

We know,  

𝑛2

𝑛1
= 𝑒−𝛽(𝜖2−𝜖1) 

where n1 is the number of particles in the energy state ε1 and n2 is the number of particles in 

the energy state ε2. 

Suppose ‘N’ is the total number of particles. Thus,  

n1 + n2 = N 

The number of particles in the energy state ε2  is  n2  =  
𝑁

3
 

The number of particles in the energy state ε1  is  n1  =  
2𝑁

3
 

Thus,  

𝑛2

𝑛1
 =  

𝑁
3

2𝑁
3

 =  
1

2
 

So,  

1

2
= 𝑒−𝛽(𝜖2−𝜖1) 

Or,     −𝑙𝑛2 = −𝛽(𝜖2 − 𝜖1) 

Or,    𝛽 =
𝑙𝑛2

𝜖2−𝜖1
 



Or,     
1

𝑘𝐵𝑇
=

𝑙𝑛2

𝜖2−𝜖1
 

Or,     𝑇 =
𝜖2−𝜖1

𝑘𝐵𝑙𝑛2
=

0.1×1.6×10−19

1.38×10−23×𝑙𝑛2
 

Or,     𝑇 = 1672.69 𝐾 

 

When the excited state is doubly degenerate, then we can write,  

𝑛2

𝑛1
=

𝑔2

𝑔1
𝑒−𝛽(𝜖2−𝜖1) 

where g1 = degeneracy of the energy state ε1 = 1 

           g2 = degeneracy of the energy state ε2 = 2 

We know,  

1

2
= 2𝑒−𝛽(𝜖2−𝜖1) 

Or,     −𝑙𝑛2 = ln 2 − 𝛽(𝜖2 − 𝜖1) 

Or,     𝛽 =
2𝑙𝑛2

𝜖2−𝜖1
 

Or,     
1

𝑘𝐵𝑇
=

2𝑙𝑛2

𝜖2−𝜖1
 

Or,     𝑇 =
𝜖2−𝜖1

2𝑘𝐵𝑙𝑛2
=

1672.69

2
 

Or,          𝑇 = 836.35 𝐾 

Hence when the degeneracy of the excited state is 2, we required half of the temperature 

compared to the non-degenerate case. 

 

 

Problem 12: 

Molecular hydrogen is usually found in two forms namely, ortho hydrogen and para-

hydrogen.  

a) After reaching equilibrium at high temperature, what fraction of molecular hydrogen 

is para-hydrogen? (Assuming that each variety of hydrogen is mostly in its lowest 

energy state.) 

b) At low-temperatures, ortho hydrogen converts mostly to para-hydrogen. Explain why 

the energy released by each converting molecule is much larger than the energy 

change due to the nuclear spin flip.  

Solution: 

a) Molecular partition function of para-hydrogen is given by 
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The molecular partition function for ortho hydrogen is  
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θrot  =  the rotational temperature =  
ℎ2

8𝜋2𝐼𝑘𝐵
 

h  =  the Plank's constant  

I  =  the moment of energy of the molecule 

kB  =  the Boltzmann constant.  

For high-temperature, qpara = qortho,  
𝑛𝑝𝑎𝑟𝑎

𝑛𝑜𝑟𝑡ℎ𝑜
=

1

4
 

According to the condition given in the problem (temperature is not too high), only 

states J = 0 and 1 exists.  

The fraction of para-hydrogen is,  
𝑛𝑝𝑎𝑟𝑎

𝑛𝐻2

=
𝑍𝑝𝑎𝑟𝑎

𝑍𝐻2

 

where   𝑍𝐻2
= 𝑆(2𝑆 + 1)𝑍𝑝𝑎𝑟𝑎 + (𝑆 + 1)(2𝑆 + 1)𝑍𝑜𝑟𝑡ℎ𝑜 

and  𝑛𝐻2
 is the total number of hydrogen molecule.  

𝑛𝑝𝑎𝑟𝑎

𝑛𝐻2

=
𝑍𝑝𝑎𝑟𝑎

𝑍𝐻2

=
1

1 + 3𝑒− 
2𝜃𝑟𝑜𝑡

𝑇

 

 

 

b) When T <<  θrot, ortho hydrogen changes into para-hydrogen. The energy 

corresponding to the change in nuclear spin orientation is the coupling energy of the 

magnetic dipoles of the nuclei and the electrons.  

∆ESJ  ~  108 Hz 

Since, the rotational states are related to the nuclear spin states, the rotational states 

also change. The corresponding energy change being,  

∆E𝑅 =  
ℎ2

8𝜋2𝐼
 ≈  1011𝐻𝑧 

When ortho hydrogen converts to para-hydrogen, the total energy change is  

∆𝐸 =  ∆E𝑅 +  ∆E𝑆𝐽  ≈  ∆E𝑅 

Thus, the released energy is much greater than ∆ESJ.  

 

 

Problem 13: 

Consider a single magnetic dipole in equilibrium with a heat bath. It has two micro states, 

namely, up spin and down spin having energies -mH and +mH respectively. What is the 

average energy of the dipole? 



Solution: 

The partition function q is  

𝑞 = ∑ 𝑒−𝛽𝜖𝑖

2

𝑖=1

 

Or,     𝑞 = 𝑒−𝛽𝜖1 + 𝑒−𝛽𝜖2 

ε1  =  -mH  and  ε2  =  +mH   

𝑞 = 𝑒𝛽𝑚𝐻 + 𝑒−𝛽𝑚𝐻 

𝑙𝑛𝑞 = ln (𝑒𝛽𝑚𝐻 + 𝑒−𝛽𝑚𝐻) 

The average energy is  

ln
 =

V

q




 
   

 
 

Or,     < 𝜀 > =
𝑚𝐻(𝑒−𝛽𝑚𝐻−𝑒𝛽𝑚𝐻)

(𝑒𝛽𝑚𝐻+𝑒−𝛽𝑚𝐻)
 

 

 

Problem 14: 

The fermi energy in silver is 5.51 eV.  

i. What is the average energy of free electrons in silver and 0 K temperature?  

ii. At what temperature a classical free particle (e.g., an ideal gas molecule) will have 

this kinetic energy?   

Solution: 

i. At 0 K temperature, the average energy of an electron in an electron gas is given by  

𝐸0
̅̅ ̅ =

3

5
× 𝐸𝐹 =

3

5
× 5.51𝑒𝑉 

or,     𝐸0
̅̅ ̅ = 3.306𝑒𝑉 

 

ii. The kinetic energy of a classical particle at T K temperature is 
3

2
𝑘𝐵𝑇. Therefore,  

3

2
𝑘𝐵𝑇 =

3

5
𝐸𝐹 

Or,     𝑇 =
3

5
×

𝐸𝐹

𝑘𝐵
 

 

Or,     𝑇 =
3

5
×

5.51×1.6×10−19

1.38×10−23
 

 

Or,   𝑇 =  2.55 × 104 𝐾 

 



 

Problem 15: 

(a)  You are given a system of two identical particles which may occupy any of the three 

energy levels,   𝜖𝑛 = 𝑛𝜖 ,  where,  n  =  0, 1, 2, …. 

The lowest energy state, ε˳ = 0, is doubly degenerated.  

The system is in thermal equilibrium at temperature T K. For each of the following cases, 

determine the partition function and the energy and carefully enumerate in the configurations.  

i. The particles obey Fermi statistics.  

ii. The particles obey Bose statistics.  

iii. The now distinguishable particles obey Boltzmann statistics. 

(b)  Discuss the conditions under which fermions or Bosons may be treated as Boltzmann 

particles.  

Solution: 

(a)  Considering the canonical ensemble, the partition function q is 

𝑞 = ∑ 𝑔𝑛𝑒−𝛽𝜖𝑛

𝑛

 

Where gn is the degeneracy of the energy level n. 

i. When the particles obey Fermi statistics, we get the following distributions, 

 

 
 

𝑞 = 1𝑒−𝛽0 + 2𝑒−𝛽𝜖 + 2𝑒−2𝛽𝜖 + 𝑒−3𝛽𝜖 

Or,     𝑞 = 1 + 2𝑒−𝛽𝜖 + 2𝑒−2𝛽𝜖 + 𝑒−3𝛽𝜖 

ln
 =

V

q




 
   

 
 

< 𝜖 > =  
𝜖

𝑞
𝑒−𝛽𝜖(2 + 4𝑒−𝛽𝜖 + 3𝑒−2𝛽𝜖) 

 

ii. When the particles are following Bose statistics, the particles are indistinguishable but 

there is no restriction in a number of particles in a given state, so we get the following 

distributions,  



 
 

The partition function q,  

𝑞 = 3 + 2𝑒−𝛽𝜖 + 3𝑒−2𝛽𝜖 + 𝑒−3𝛽𝜖 + 𝑒−4𝛽𝜖 

 

The average energy is  

< 𝜖 > =  
𝜖

𝑞
𝑒−𝛽𝜖(2 + 6𝑒−𝛽𝜖 + 3𝑒−2𝛽𝜖 + 4𝑒−3𝛽𝜖) 

 

iii. When the particles obey Boltzmann statistics particles, they are distinguishable and 

there is no restriction in number of particles in a given state, so the following 16 

distributions are possible. 

 

 
 

The partition function q is  

𝑞 = 4 + 4𝑒−𝛽𝜖 + 5𝑒−2𝛽𝜖 + 2𝑒−3𝛽𝜖 + 𝑒−4𝛽𝜖 

 

From there we get average energy,  

< 𝜖 > =  
2𝜖

𝑞
𝑒−𝛽𝜖(2 + 5𝑒−𝛽𝜖 + 3𝑒−2𝛽𝜖 + 2𝑒−3𝛽𝜖) 

 

(b)  Discussed in the lecture. 

 

Ergodic Hypothesis 

It states that the time average equals the ensemble average.  

< 𝐴 >𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  < 𝐴 >𝑡𝑖𝑚𝑒  

where A is any macroscopic variable.  



The < 𝐴 >𝑡𝑖𝑚𝑒  can be calcuated by  

< 𝐴 >𝑡𝑖𝑚𝑒=  lim
𝜏→∞

1

𝜏
∫ 𝐴(𝑡)𝑑𝑡

𝜏

𝑡=0

 

The basic idea is that if one allows the system to evolve in time indefinitely, that system will 

eventually pass through all possible states. 


