Thermodynamics: Classical to Statistical Prof. Sandip Paul

Department of Chemistry

Indian Institute of Technology Guwahati

Lecture - 36

Advance Problems - 4

Problem 5:

The energy level of an oscillator with frequency v is given by,

$$\varepsilon = \frac{1}{2}hv, \ \frac{3}{2}hv, \dots, \left(n + \frac{1}{2}hv\right)$$

When a system consisting of 'N' independent oscillators has the total energy,

$$E = \frac{1}{2} Nhv + Mhv$$

where M is an integer.

- i. Find the thermodynamic weight w_M
- ii. Determine the relation between the temperature of the system and energy E.

Solution:

i. If the quantum number of the i-th oscillator is denoted by n_i and $E = \frac{1}{2}Nhv + Mhv$

implies that $n_1 + n_2 + n_3 + \dots + n_N = M$.

Therefore, it is assumed that the thermodynamic weight of a macroscopic state with the total energy E is equal to the number of ways of distributing 'M' white balls among 'N' labeled boxes.

$$w_M = \frac{(M+N-1)!}{M!(N-1)!}$$

ii. $S = k_B \ln w_M$

Substituting the value of w_M and using Stirling's approximation under the assumption that N >> 1 and M >> 1, we can write

$$S = k_B \left\{ (M+N) \ln (M+N) - M \ln M - N \ln N \right\}$$

Now the statistical temperature T(E) is expressed by

$$\frac{1}{T} = \frac{\partial S}{\partial E} = \frac{\partial S}{\partial M} \frac{\partial M}{\partial E}$$

or,
$$\frac{1}{T} = k_B \ln\left(\frac{M+N}{M}\right) \frac{\partial M}{\partial E}$$
or,
$$\frac{1}{T} = \frac{k_B}{hv} \ln\left(\frac{M+\frac{1}{2}N+\frac{1}{2}N}{M+\frac{1}{2}N-\frac{1}{2}N}\right)$$
or,
$$\frac{1}{T} = \frac{k_B}{hv} \ln\left(\frac{E}{N} + \frac{1}{2}hv\right)$$

or, inversely, we can write

$$\left(\frac{\frac{E}{N} + \frac{1}{2}hv}{\frac{E}{N} - \frac{1}{2}hv}\right) = e^{\frac{hv}{k_BT}}$$

Solving this for energy, we get

$$E = N \left\{ \frac{1}{2} h \nu + \frac{h \nu}{e^{\frac{h \nu}{k_B T}} - 1} \right\}$$

Problem 6:

There are 1000 molecules of an ideal gas in a box of 1 L volume. Assuming that the particles do not preferentially occupy any region, find the probability of finding the particles in a particular region of volume 100 cm³. For what value of 'n' where n is the number of particles is this probability maximum?

Solution:

The probability of finding a molecule in a volume of 100 cm³ = $\frac{1}{10}$

since the volume of the box = 1 L.

If 'n' numbers of particles are to be there, the probability = $\frac{1}{10}^n$

We had 1000 particles out of which 'n' particles are present in a volume of 100 cm³.

The remaining (1000-n) number of particles must be in the residual volume of 900 cm³ having a probability of $\frac{9 \cdot 1000 - n}{10}$.

Hence, the probability of finding a particular set of 'n' molecules in 100 cm³ volume is 1 $\left(\frac{1}{10}\right)^n \left(\frac{9}{10}\right)^{1000-n}$.

Since, we can choose 'n' molecules out of 1000 molecules in ¹⁰⁰⁰C_n different ways, the probability of finding the particles in a particular region of volume 100 centimeter cm³ is

$$P(n) = C_n^{1000} \left(\frac{1}{10}\right)^n \left(\frac{9}{10}\right)^{1000-n}$$

Now, if you take the log of both sides we get,

$$\ln P(n) = \ln 1000! - \ln n! - \ln(1000 - n)! - n\ln 10 + (1000 - n)\ln \frac{9}{10}$$

Using Stirling's approximation,

$$\ln P(n) = \ln 1000! - n \ln n + n - (1000 - n) \ln(1000 - n) + (1000 - n) - n \ln 10 + (1000 - n) \ln \frac{9}{10}$$

Differentiating the above expression with respect to n,

$$\frac{d\ln P(n)}{dn} = -\ln n + 1 + \ln(1000 - n) + 1 - 1 - \ln 10 - \ln \frac{9}{10}$$
Or,
$$\frac{d\ln P(n)}{dn} = -\ln n + \ln(1000 - n) - \ln 9$$
Or,
$$\frac{d\ln P(n)}{dn} = \ln \frac{1000 - n}{9n}$$

For maximum probability, we can write,

$$ln\frac{1000 - n}{9n} = 0 = ln1$$

Or, $\frac{1000 - n}{9n} = 1$

Or, $n = 100$

Problem 7:

The three lowest energy levels of a certain molecule are $E_1 = 0$, $E_2 = \varepsilon$ and $E_3 = 10\varepsilon$. Show that at sufficiently low temperature only E_1 and E_2 are populated. Find the average energy, E_1 , of the molecule at temperature T and the contributions of three levels to molar specific heat $\overline{C_v}$. Plot $\overline{C_v}$ versus absolute temperature 'T'.

Solution:

Let 'N' be the number of particles in the system.

$$N = N_1 + N_2 + N_3$$

considering that there are only three energy levels of a molecule, E_1 , E_2 and E_3 are available. N_1 , N_2 and N_3 are the number of particles in energy levels E_1 , E_2 and E_3 respectively.

$$\frac{N_1}{N} = \frac{e^{-\beta E_1}}{Q} \quad \text{and} \quad \frac{N_2}{N} = \frac{e^{-\beta E_2}}{Q}.$$

So,

$$\frac{N_2}{N_1} = e^{-\beta \varepsilon} = e^{-\frac{\varepsilon}{k_B T}}$$

$$Or, N_2 = N_1 e^{-\frac{\varepsilon}{k_B T}}$$

Similarly,

$$N_3 = N_1 e^{-\frac{10\varepsilon}{k_B T}}$$

Now,

$$N=N_1+N_2+N_3$$
 Or,
$$N_1+N_1e^{-\frac{\varepsilon}{k_BT}}+N_1e^{-\frac{10\varepsilon}{k_BT}}=N$$
 Or,
$$N_1=\frac{N}{1+e^{-\frac{\varepsilon}{k_BT}}+e^{-\frac{10\varepsilon}{k_BT}}}$$

So,

$$N_3 = \frac{Ne^{-\frac{10\varepsilon}{k_B T}}}{1 + e^{-\frac{\varepsilon}{k_B T}} + e^{-\frac{10\varepsilon}{k_B T}}}$$

Or,
$$N_3 = \frac{N}{e^{\frac{10\varepsilon}{k_B T}} + e^{\frac{9\varepsilon}{k_B T}} + 1}$$

When T is very low, then $N_3 \approx 0$.

Hence only the energy levels E₁ and E₂ are populated at a low critical temperature T_C.

T_C satisfies the equation

$$\frac{N}{e^{\frac{10\varepsilon}{k_BT}} + e^{\frac{9\varepsilon}{k_BT}} + 1} = 1$$

At critical temperature T_C there is only one particle in level 3 and below T_C there is practically no particle.

If $N \gg 1$ then,

$$N \approx e^{\frac{10\varepsilon}{k_B T_C}}$$

$$T_C = \frac{10\varepsilon}{k_B \ln N}$$

The average energy, <E> average is

$$\langle E \rangle = \frac{\varepsilon (e^{-\frac{\varepsilon}{k_B T}} + 10e^{-\frac{10\varepsilon}{k_B T}})}{1 + e^{-\frac{\varepsilon}{k_B T}} + e^{-\frac{10\varepsilon}{k_B T}}}$$

The molar specific heat $\overline{C_{\nu}}$ is

$$\overline{C_v} = N_A \left(\frac{\partial E}{\partial T}\right)_V$$

$$\overline{C_V} = \frac{R\varepsilon^2 \left(e^{-\frac{\varepsilon}{k_B T}} + 100e^{-\frac{10\varepsilon}{k_B T}} + 81e^{-\frac{11\varepsilon}{k_B T}}\right)\beta^2}{\left(1 + e^{-\frac{\varepsilon}{k_B T}} + e^{-\frac{10\varepsilon}{k_B T}}\right)^2}$$

For low temperature when $k_BT \ll \epsilon$, we get,

$$\bar{C}_{V} pprox rac{R \varepsilon^{2} e^{-rac{\varepsilon}{k_{B}T}}}{\left(k_{B}T\right)^{2}}$$

The plot $\overline{\mathcal{C}_{v}}$ versus absolute temperature looks like,

Problem 8:

For a monovalent ion, which by definition gives 1 electron, calculate the value of Fermi energy, ε_F . Given, the number density value is 10^{-29} m⁻³.

Solution:

The Fermi energy ε_F is

$$\varepsilon_F = \frac{\hbar^2}{2m_e} \left(\frac{6\pi^2}{(2S+1)} \frac{N}{V} \right)^{\frac{2}{3}}$$

Plank's constant, $h = 6.626 \times 10^{-34} \text{ J s}$

The mass of electron, $m_e = 9.1 \times 10^{-31} \text{ kg}$

The number density, $\frac{N}{V} = 10^{-29} \,\mathrm{m}^{-3}$

The spin of the electron, $S = \frac{1}{2}$, so (2S+1) = 2.

Substituting all these values we get,

$$\varepsilon_F = 2.715 \times 10^{-57} J$$

Problem 9:

Consider a free electron gas at 0 K temperature and show that the de Broglie wavelength associated with an electron is given by

$$\lambda_F = 2 \left(\frac{\pi}{3n_{\circ}} \right)^{\frac{1}{3}}$$

where $n_{_{\circ}}$ is the number of electrons per cm 3 of gas.

Solution:

The momentum 'p' of the electron is given by

$$p = \sqrt{2mE_F}$$

We have,

$$(E_F)_{0K} = \frac{\hbar^2}{2m_e} \left(\frac{6\pi^2}{(2S+1)} \frac{N}{V} \right)^{\frac{2}{3}}$$

(2S+1) = 2

Or,
$$E_F = \frac{h^2}{8m_e} \left(\frac{3N}{\pi V}\right)^{\frac{2}{3}}$$

So, the de Broglie wavelength is

$$\lambda_F = \frac{h}{p} = \frac{h}{\sqrt{2m_e E_F}}$$
 or,
$$\lambda_F = \frac{h}{\sqrt{2m_e \times \frac{h^2}{8m_e} \left(\frac{3N}{\pi V}\right)^{\frac{2}{3}}}}$$
 or,
$$\lambda_F = \frac{h}{\sqrt{\frac{h^2}{4} \left(\frac{3N}{\pi V}\right)^{\frac{2}{3}}}}$$
 or,
$$\lambda_F = \frac{1}{\frac{1}{2} \left(\frac{3N}{\pi V}\right)^{\frac{1}{3}}}$$
 or,
$$\lambda_F = 2 \left(\frac{\pi}{3n_\circ}\right)^{\frac{1}{3}}$$

Problem 10:

A system of two energy levels E_0 and E_1 are populated by 'N' particles at temperature 'T'. The particles populate the energy levels according to the classical distribution law.

- i. Derive an expression for the average energy per particle.
- ii. Compute the average energy per particle versus the absolute temperature as $T \to 0$ and $T \to \infty$.

- iii. Derive an expression for the specific heat of the system of 'N' particles.
- iv. Compute the specific heats in the limits T goes 0 and T goes to ∞ .

Solution:

i. The average energy of the particle is

$$\langle E \rangle = \frac{E_0 e^{-\beta E_0} + E_1 e^{-\beta E_1}}{e^{-\beta E_0} + e^{-\beta E_1}}$$

Assuming $E_1 > E_{\circ} > 0$ and ΔE is $E_1 - E_{\circ}$

$$\langle E \rangle = \frac{E_0 + E_1 e^{-\beta \Delta E}}{1 + e^{-\beta \Delta E}}$$

ii. When $T \to 0$ or $\beta \to \infty$

$$< E> = \left(E_0 + E_1 e^{-\beta \Delta E}\right) \left(1 - e^{-\beta \Delta E}\right)$$
 Or,
$$< E> = E_0 + \Delta E e^{-\beta \Delta E}$$

When $T \to \infty$ or $\beta \to 0$

$$< E> \approx \frac{1}{2} \left(E_0 + E_1 - \beta E_1 \Delta E \right) \left(1 + \frac{1}{2} \beta \Delta E \right)$$

or, $< E> \approx \frac{1}{2} \left(E_0 + E_1 \right) - \frac{\beta}{4} \left(\Delta E \right)^2$

iii. The specific heat (per mole) is

iv. When $T \rightarrow 0$

$$\bar{C} \approx R \left(\frac{\Delta E}{k_B T} \right)^2 e^{-\frac{\Delta E}{k_B T}}$$

When $T \rightarrow \infty$

$$\bar{C} \approx \frac{R}{4} \left(\frac{\Delta E}{k_B T} \right)^2$$