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Problems on Classical Thermodynamics 

 

Problem 1: 

One mole of a monoatomic ideal gas (γ = 5/3) at 27 ˚C is adiabatically compressed in a 

reversible process from an initial pressure of 1 atm to a final pressure of 50 atm. Calculate the 

resultant difference of temperature.  

Solution: 

We have, 

P1 = initial pressure = 1 atm. 

P2 = final pressure = 50 atm. 

T1 = initial temperature = 27°C = 300 K. 

T2 = the final temperature = ? 

We know, for adiabatic process,  
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Now, γ = 5/3. Substituing the values,  
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The resulting difference in temperature is, 



T2 - T1  =  (1434.5  - 300) K  =  1134.5 K  =   861.5°C . 

 

 

Problem 2: 

An ideal gas expands reversibly according to the equation, 

PVn = A  

where A is a constant. Show that the heat absorbed by the gas is w(γ-n)/( γ-1) where w is the 

work done by the gas during the process.  

Solution: 

For a reversible transformation we can write from first law of thermodynamics, 

δqrev = Cv dT + PdV          (1) 

or,     
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Considering,  

Cv is the constant term or independent of temperature.  

T1 is the initial temperature. 

T2 is the final temperature. 

V1 is the initial volume. 

V2 is the final volume. 
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Here we consider one mole of an ideal gas. 

But the work done by the gas w given by equation 1 is,  
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Problem 3: 

A reversible engine converts one sixth of the heat inputs into work. If the temperature of the 

sink is reduced by 62°C, its efficiency is doubled. Find the temperature of the source and the 

sink.  

Solution: 

To consider the efficiency of the engine we need to look at Carnot Cycle. The efficiency of 

the engine η is 
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Where, T1 is the temperature of the source and T2 is the temperature of the sink. 

If ηʹ is the efficiency of the engine when the temperature of the sink is reduced by 62°C, we 

can write, 
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Dividing equation 2 by equation 1, we get,  
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This is the temperature of the sink.  

Again we have,                                               
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The temperature of the source is 372 K and the temperature of the sink is 310 K. 

 

 

Problem 4: 

10 g of water at 60°C is mixed with 30 g of water at 20°C. Will the entropy of the resulting 

system increase or decrease? Calculate the change in entropy.  

Solution: 

Suppose the final temperature (after mixing of 10 g of water at 60°C and 30 g of water at 

20°C) is t°C. We can write,  
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So the resulting temperature t is 30°C. 

Now the change in entropy of 10 g of water due to change in temperature from 60 to 30°C is 
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 T1 is 60 + 273 K = 333 K and T2 = 30 + 273 K = 303 K.  
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Now the change in entropy of 30 g of water due to change in temperature from 20°C  to 30°C 

is  
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So total change in entropy due to mixing, 
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Since ΔSmix is positive, the entropy of the resulting system will increase. This problem was 

based on the concept of entropy of mixing. 

 

 

Problem 5: 

Two bodies of equal and constant thermal capacity ‘C’, at absolute temperatures T1 and T2 

respectively (where T1 > T2) attain the same temperature on being placed in direct thermal 

contact. Calculate the loss of available energy.  

Solution: 

 

If Tc be the common final temperature of the two bodies then we can write,  
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as T1 > T2 and  both the bodies are considered to have equal masses, we get, 
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The entropy change of the first body,  
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The total entropy change for this process is,  
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Now substituting the value of Tc, we get, 
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If T0 be the lowest available temperature, the amount of available energy is 

= 𝑇0 ×  ∆𝑆 = 𝑇0𝑚𝐶 𝑙𝑛 [
(𝑇1 + 𝑇2)2

4𝑇1𝑇2
] 

 

 

Problem 6: 

The molar specific heat capacity at constant volume of diamond varies with temperature as  

𝐶𝑉 = 3𝑅 × (
𝑇

𝜃𝐷
)
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where θD is the Debye temperature. Calculate the change in entropy in units of gas constant R 

of 1.2 g of diamond when it is heated at constant volume from 10 K to 350 K. Given atomic 

weight of carbon is 12 and θD is 2230 K.  

Solution: 

The change in entropy is given by, 
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where n = 1.2 / 12 = 0.1.  
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Problem 7: 



Calculate the efficiency of the cycle ABCDA as depicted in the T-S diagram given below in 

terms of T1 and T2. Given AC = BD. 

 

 

Solution: 

In the T-S diagram the heat absorbed is given by  

q = area of ABC S1S2A = area of semicircle ABCA + area of rectangle ACS1S2 
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Work done, w, is given by,  
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So the efficiency of the cycle ABCDA is given by  
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Problem 8: 

Determine the values of Cv, Cp and γ for SO3 gas.  

Solution: 

SO3 molecule is non-linear. 

The internal energy per mole 
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Problem 9: 

For the reaction,  

2 NO (g) + O2 (g) = 2 NO2 (g) 

the value of ∆H = 113.1 kJ. If 6 moles of NO reacts with 3 moles of O2 at 1 atm pressure and 

298 K temperature to form NO2, calculate the work done in kJ unit against a pressure of 1 

atm. What is the internal energy change, ∆U, for the reaction?  

Solution: 

At constant pressure,  
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Or,     3 3 8.314 298 7.432w RT kJ      

Now ∆n for the reaction = 2 – (2 + 1) = -1.  
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