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Problems  

 

Problem 1: 

Show that the vibrational entropy of a 3d-solid, described by the Einstein model, is  
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where / Bx h k T .  

Solution: 

We know, entropy, lnB
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Now the total partition function is 
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Substituting all the above values, we get 
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Using 1/ Bk T   and / Bx h k T .  

 

Problem 2: 

Consider a solid, where a fixed number of atoms, ‘N’ form into a crystal, where the atoms sit 

in an ordered array on the sites of a lattice. An Schottky defect is a lattice site without an 

atom. Assume that there are ‘n’ number of lattice sites that do not have any atom and each 

defect costs energy of epsilon. Calculate the Helmholtz free energy as a function of ‘n’. Also 

show that the equilibrium number of defects can we written as  
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Solution: 

It is clear that ‘N’ number of sites in the lattice are occupied and ‘n’ number of sites in the 

lattice are unoccupied.  

So, total number of lattice site is N plus n.  

The weight of the distribution,  
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The minimization of A (n) with respect to n gives the equilibrium number of defects. 
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where  1/ Bk T  .  

 

Problem 3: 

A two level system of N (N=n1+n2) number particles is distributed between two states 1 and 2 

with energies E1 and E2 respectively. The system is in contact with a reservoir at temperature 

T K. If a single quantum emission occurs, population changes from n2 to n2-1 and n1 to n1+1. 



For n1 >> 1 and n2 >>1, obtain (a) the entropy change of the system, (b) the entropy change 

of the reservoir and (c) from a and b, derive the Boltzmann relation. 

Solution: 

Before emission,  

The number of particles in energy state E1 = n1  

The number of particles in energy state E2 = n2 

The weight of the distribution, 1 2
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After emission,  

the number of particles in energy state E1 = n1+1 

the number of particles in energy state E2  = n2-1 

The weight of the distribution, 1 2
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The entropy,  2 1 2 1 2 1 1 2 2ln ( ) ln( ) ( 1) ln( 1) ( 1) ln( 1)B BS k w k n n n n n n n n           

(a) The change in entropy of the system due to this process, 
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(b) Entropy change of the reservoir, 2 1
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(c) Now,  
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So, this is nothing but the Boltzmann relation.  

 

Problem 4: 

The third law of thermodynamics asserts that 
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  for any macroscopic system. What 

condition has to be satisfied for this claim to hold? 



Solution: 

We know, partition function, Q, is  
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where 0 , 1 , 2  etc, are the degeneracies of the ground state, first excited state and 

second excited state, etc, and, E0 is the ground state energy; E1 is the first excited state 

energy, E2 is the second state energy. 
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where, 1 1 0E E E    and 2 2 0E E E    and so on. 

Now, at low temperature ( 0T   or   ), 1 1E   and so on. 
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So, this says 0S  , when 0 1  .  

So, it says that ground state must be non-degenerate or, the degeneracy of the ground state 

must be 1, in order to hold the relation, 
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