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Specific Heats of Solids  

Consider a simple solid consisting of ‘N’ number of atoms. The atoms in solid cannot 

translate (unlike liquids and gases). But, the atoms are free to vibrate about their equilibrium 

positions. Such vibrations are called lattice vibrations, and can be thought of as sound waves 

propagating through the crystal lattice. Each atom in a solid is specified by three independent 

position coordinates and three conjugate momentum coordinates. 

Let us consider only small amplitude vibrations. In this case, we can expand the potential 

energy of interactions between the atoms to give an expression, which is quadratic in atomic 

displacements from their equilibrium positions. It is always possible to perform a normal 

mode analysis of the oscillations. In effect, we can find 3N independent modes of oscillations 

of the solids. Each mode of oscillation has its own particular frequency, and its own 

particular pattern of atomic displacements. Any general oscillation can be written as a linear 

combination of these normal modes. 

Thus, it is clear that in normal mode coordinates the linearized lattice vibrations are 

equivalent to 3N independent harmonic oscillators (of course each oscillator corresponds to a 

different normal mode).   

If the lattice vibrations behave classically, then according to equipartition theorem, each 

normal mode of oscillation has an associated mean energy kBT in equilibrium at temperature 

T K, (1/2 kBT due to kinetic energy of the oscillation and 1/2 kBT for potential energy). The 

equipartition theorem says that every quadratic term in the energy expression gives 1/2 kBT.  

We have 3N normal modes of vibrations. Thus, the mean internal energy per mole 

(considering N equals to NA) of solids is,  

<E> = 3NA kBT = 3RT 

The molar heat capacity or heat capacity per mole at constant volume is  
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In fact, at room temperature, most solids (in particular metals) have heat capacities which lie 

remarkably close to this value. This fact was discovered experimentally by Dulong and Petite 

at the beginning of the nineteenth century. But, Dulong and Petite’s law, which is molar heat 

capacity of a solid is 24.9 J mole-1degree-1, is valid at high temperature only. 

The molar heat capacity cannot remain a constant as the temperature approaches absolute 

zero. Since the equation, 
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suggests as 0T  , entropy, S  , if CV is constant, which violates third law of 

thermodynamics. 

We can make a crude model of the behaviour of CV at low temperatures by assuming that all 

the normal modes oscillate at the same frequency, ω, where,  

ω = 2πν 

This approximation was first employed by Einstein. Thus the solid acts like a set of 3N 

independent oscillators and they vibrate at the same frequency. This is Einstein’s model.  

We know the average energy of 3N harmonic oscillators is,   
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The heat capacity is then, 
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Hence, 
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Simplifying, we get, 
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If we substitute, the value of Einstein temperature θE , 
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in the above expression of CV, we get,  
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When, N = NA , n = 1, then molar heat capacity of solids is,  
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This is the general expression for molar heat capacity according to Einstein’s Model.  

 Now, we consider high temperature limit,  

T  >>  θE   or   kBT >>  , 

 

Molar heat capacity becomes,  3VC R  ,  
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 Considering the low temperature limit,  

T  <<  θE    or    θE/T  >> 1 
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When, θE/T  >> 1,    
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The specific heat approaches zero exponentially when T goes to 0.  

In reality, the specific heat of solids do not approach zero quite as quickly as 

suggested by Einstein’s model when T tends to 0. The experimentally observed low 

temperature behaviour of CV is 3

VC T  .   

The reason for discrepancy is the crude approximation that all normal modes have the same 

frequency. In fact, long wavelength modes have lower frequencies than short wavelength 

modes, so, the former are harder to freeze out than the latter because the spacing between 

quantum energy levels,   is smaller in the former case. The molar heat capacity does not 



decrease with temperature as rapidly as suggested by Einstein’s Model, because those long 

wavelength modes are able to make significant contribution to heat capacity even at low 

temperatures. 

 A more realistic model of lattice vibrations was developed by the Dutch Physicist Peter 

Debye in 1912. In the Debye model, the frequencies of the normal modes of vibration are 

estimated by treating the solid as an isotropic continuous medium. This approach is 

reasonable because the modes which really matter at low temperatures are the long 

wavelength modes i.e., those whose wavelengths greatly exceeds the interatomic spacing.  

It is plausible that these modes are not particularly sensitive to the discrete nature of the solid 

i.e., the fact that it is made up of atoms rather than being continuous.   

 

Debye Theory of Solids 

According to Debye theory,  
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Where D  is known as Debye Temperature and D  is the Debye frequency. 

Let us consider a function D (Debye function), which is defined by 
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If we substitute the value of D from equation 2 into equation 1 we get,  
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Equation 3 must be evaluated numerically for arbitrary values of T/θD. 

Now we consider two different temperature level.  

 At high temperature,  

/ 0D T   , hence, x goes to 0. So, we can write, 
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So, if we substitute this in Debye expression of equation 2 we get D(T/θD) = 1. Thus 

CV  =  3NkB  =  3nR  



3VC R  = 24.9 J mole-1degree-1 

So, Debye theory can predict the value of molar heat capacity of solids at high 

temperature.  

 

 At the low temperature, /D T  , So 
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So 3

VC T  and this is known as Famous T3 law. 

According to Debye theory heat capacity of solid, at high temperature, is a constant term 24.9 

J mole-1degree-1 as predicted by Dulong Petite’s law as well as Einstein’s model and at lower 

temperature limit CV goes to T3 according to Debye theory of solid. 


