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In the last class we discussed about heat capacity, heat capacity at constant 

volume and constant pressure. 

Now, 

(δH/δT)P = CP 

If we take dT on both side and if we do the integration, by taking the limit of H 

from H1 to H2 and the same for temperatutre is T1 to T2 and if CP is independent 

of temperature. Then we get, 

ΔH = H2(T2) – H1(T1) = H2 – H1 = CPdT 

So, next we will briefly discuss what is Kirchoff’s equation or Kirchoff’s law.  

 

This is Kirchoff’s law, the derivation we are not going to discuss now. We all 

studied this thing. Where, you know ΔCp represents the difference of the heat 

capacities of the individual products and reactants at temperature T. So, also this 

is Kirchoff’s law.  



Now, we will move to limitations of first law of thermodynamics. There are some 

thermodynamic phenomena which cannot be explained by first law of 

thermodynamics.  

 

Figure 1 

Suppose, we have one bulb (Figure 1) here which is filled with bromine gas and 

there is a stopcock over there. This is initial state. If we remove the stopcock, 

what we get? We get bromine gas molecules will occupy both the bulbs. So this 

is our final state. This is experiment 1. Consider one more experiment like this. 

so you have bromine gas in one container and Nitrogen gas in another container 

and if you remove the stopcock, they will mix with each other. So in both the 

bulbs you get mixture of bromine and nitrogen. This is initial state and this is final 

state. This is experiment 2. For both these experiments ΔU is 0, and ΔH is 0. So, 

from first law of thermodynamics we get the concept of internal energy and 

enthalpy. So, these two processes cannot be explained from first law of 

thermodynamics. So what is happening here. So if we examine the above 

processes from a molecular point of view, we see that each process involves an 

increasing disorder or randomness of the system. If we see the experiments 

carefully again, initially we had bromine gas here in one bulb, another bulb was 



was empty and if we remove the stopcock, this is the stopcock, bromine gas will 

spread. So the randomness means each bromine molecule in both the bulbs are 

now available to move around. Similarly here for bromine and nitrogen case, for 

experiment 2, if remove the stopcock the bromine gas will have access to other 

bulb. Similarly for nitrogen gas molecules they will have access to occupy the 

other bulb. So, randomness and disorderness increases. So, why it is important? 

For the processes where energy is not a prime factor then we need to see the 

randomness or the disorderness of the system. Now in order to quantify the 

disorderness or randomness, we need to have a function or we need to have a 

function or a state function rather because a state function has advantage over any 

other function because property of a state function depends upon state of the 

system, so we need to have a state function. So we will discuss this thing later 

also and actually it gives the concept of entropy. We define entropy by S. So, 

entropy is nothing but disorderness or randomness of a system. If you remember 

correctly, we have so far discussed or we have rather proved that U (internal 

energy) is a state function, w or work done is a path function, what about q? so 

heat q is a path function we have not proved it yet. So, today we will prove it that 

q is a path function. Consider a reversible process. From first law of 

thermodynamics,  

dU = δqrev + δwrev 

CV(T)dT = δqrev – PdV 

δqrev = CV(T)dT + (nRT/V)dV (For ideal gas, P = nRT/V) 

This is the equation we have derived so far. 

Now, 

CV(T)dT = d[ ʃCV(T)dT + contant] 



This is perfect differential. Rather this is dU and what about the other term? We 

cannot write (nRT/V)dV like this because T (absolute temperature) depends on 

V. So who is troubling us? Troubling us is T. If we divide this equation by T then 

our problem will be solved. 

δqrev/T = (CV(T)/T)dT + (nR/V)dV 

Each term in the right hand sides are perfect differential, which says that δqrev/T 

is perfect differential. So what we have obtained so far? We have obtained that 

δqrev is not a perfect differential, which says that q is not a state function. But, 

δqrev/T is a perfect differential. So δqrev/T is a state function and we know δqrev/T 

is nothing but dS (dS = δqrev/T). That we have studied. So in a single shot we 

proved that q is not a state function, q is a path function as well as we proved that 

entropy is a state function. So we have proved that entropy is a state function. We 

can prove entropy is a state function in another manner in a PV diagram.  

 

Figure 2 

So we consider a PV diagram like Figure 2. (P1, V1, T1) is our initial state and (P2, 

V2, T1) is our final state. So we can reach from the initial state (P1,V1, T1) to the 

final state (P2, V2, T1) through the path A, or we can first go to a point (P3, V2 , 

T2) and then we go from here. So this is path B and path C. So path A is reversible 

isothermal expansion. In reversible isothermal process, temperature is constant, 

volume increases from V1 to V2. So this expansion process. What about path B? 



Path B is reversible adiabatic expansion. So path B is an adiabatic process and 

this is expansion process because again volume increases from V1 to V2. And, 

what about path C? So path is nothing but reversible heating at constant volume. 

There is no volume change but the pressure increases from P3 to P2. So if you 

want keep the volume constant but you want to increase the pressure, you need 

to increase the temperature. So the process is reversible heating at constant 

volume. So what we get so far? From this diagram and the information we have 

so far,  

δqrev,B = 0, for path B, as adiabatic process. 

For path C: δwrev = 0, as no PV work. 

dUC = δqrev,C = CV(T)dT 

We need to prove, ΔSA = ΔSB + ΔSC 

For path A: dSA = δqrev,A/T 

dUA = 0 

δqrev,A = –δwrev,A = PdV = (nRT/V)dV 

dSA = (nR/V)dV 

ΔSA = nRln(V2/V1) 

For path B: ΔSB = 0, as δqrev,B = 0 

For path C: dSC = δqrev,C/T = (CV(T)/T)dT 

Now, for adiabatic process δq = 0. So it says, dU = δWrev. So it gives us, 

Cv(T) dT = –(nRT/V)dV and temperature changes from T1 to T2 and volume from 

V1 to V2. By integrating this, we get, 

CV(T2 – T1) = nRTln(V1/V2) 

So, for path C: ΔSC = CVln(T2/T1) = nRln(V2/V1) = ΔSA 



S0, , ΔSA = ΔSB + ΔSC, as ΔSB = 0 

So it says that ‘S’ is a state function because we arrived the final point P2, V2, T1 

from initial point P1, V1, T1 in two different manner, one is via path A and another 

is combination of path B and C, and in both cases we get same entropy change. 

It states ‘S’ is a state function. 

Next we will move to the second law of thermodynamics. There are several 

statements but we will consider one, we will discuss one statements today. This 

one statement is the entropy of an isolated system increases as a result of a 

spontaneous process. We will consider how we will prove it. 

 

Figure 3 

So, what we consider? We consider one big system like Figure 4, in that container 

we have a wall, this is rigid heat conducting wall, which has two compartments, 

we say this is compartment A and this is compartment B and these two 

compartments are separated by a rigid heat conducting wall and temperature of 

this compartment is TA and volume of this compartment is VA and if we say 

temperature of this compartment is TB and volume of this compartment is VB and 

the entire system is isolated from the surroundings. Now, compartment A and 

compartment B they are in equilibrium with themselves means compartment A is 

in equilibrium with itself and compartment B is in equilibrium with itself, but 



they are not in equilibrium with each other. So we know when there is a 

temperature change spontaneously from or heat goes spontaneously from higher 

temperature to lower temperature. Since these two compartments are separated 

by rigid heat conducting walls, the heat can be transferred from one compartment 

to another compartment, but volume cannot be changed. Since the whole system 

isisolated, 

UA + UB = constant 

 

Because of rigid wall,  

VA = constant and VB = consatnt 

Now, what is entropy change? 

dSA = δqrev,A/TA 

dSB = δqrev,B 

Since, δw = 0, 

δqrev,A = dUA and δqrev,B = dUB 

So, 

dSA = dUA/TA 

dSB = dUB/TB 

Total entropy change, 

dS = dSA + dSB = dUA/TA + dUB/TB 

Again, UA + UB = constant => dUA =  – dUB 

So, dS = (1/TB -1/TA)dUB 

Case I: TB > TA then dUB < 0, So, dS > 0 



Case I: TB = TA then dS = 0. 

So what we observed here? We observed if there is a temperature difference 

between the compartments then entropy increases and the whole thing is isolated 

from the surrounding, there is no contribution of the surroundings to the system. 

So in entropy change is positive means that process is spontaneous one, the heat 

passes through the wall from one compartment to the other compartment 

spontaneously if there is a temperature difference between the compartments. If 

there is no temperature difference between compartments dS is 0, there is no net 

entropy change for this process. 

 

Figure 4 

So if we plot schematically as how entropy changes with time (Figure 4), we get 

here spontaneous change, spontaneous increase in entropy and once it reaches 

equilibrium then there is no entropy change. And this is dS > 0, so this is your 

spontaneous. This is equilibrium. So at equilibrium there is no entropy change of 

the system here because we consider isolated system here. So dS = 0 and system 

reaches equilibrium for this isolated system and dS keep on increasing till it 

reaches equilibrium and this is the point we can say it is maximum entropy. So 

once it reaches maximum entropy then it reaches equilibrium.  


