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In grand canonical distribution we know 

                                        pNj = 
e

−βENj(V)
 e−γN

Ѳ (V,T,γ)
 

 The grand canonical partition function,  Ѳ (V, T, γ) =  ∑ ∑ e−βENj(V)e−γN jN  

. Since, we obtained the partition function we can calculate different thermodynamical 

properties like average energy. 

                              <E> = ∑ ∑  jN pNj(V, β, γ) ENj(V) 

                             <E> = − (
∂lnѲ

∂β
)

V,γ
=  kBT2 (

∂lnѲ

∂T
)

V,γ
 

. We can also calculate average pressure.  

                              <P> = 
1

Ѳ 
 ∑ ∑  jN (

∂ENj

∂V
) e−βENj(V)e−γN   

                       ⇒   <P> = kBT (
∂lnѲ

∂V
)

β,γ
 

 

We can also calculate the average number of particles in a given system  

                                 <N> = 
1

Ѳ 
 ∑ ∑  jN Ne−βENj(V)e−γN   



                     ⇒        <N> = (
∂lnѲ

∂γ
)

V,β
 

Now we can calculate other thermodynamical properties but before that what is the value of 

gamma we need to calculate next?  

 

Let us consider a function 

                           f (β, γ{ENj(V)}) = lnѲ = ln ∑ ∑  jN e−βENj(V)e−γN   

   ⇒   df = (
∂f

∂β
)

γ,{ENj(V)}
dβ + (

∂f

∂γ
)

β,{ENj(V)}
dγ + ∑ ∑ (

∂f

∂ENj
)

β,γ,{ENj(V)}

dENj j N  

Here we are keeping constant all ENj values except the one we are differentiating with.  

  ⇒   df = −< E > dβ−< N > dγ + β < P > dV 

 ⇒ d(f + β < E >  + γ < N >) = β d< E >  + β < P > dV + γ d< N > …………(1) 

  From thermodynamics for open system we get 

             T dS = dU+ PdV- μ dN …………..(2) 

 Comparing equation (1) and (2) 

             γ =  
μ

kBT
 ………………(3) 

    So,     S = 
<E>

T
− 

<N>μ

T
+ kBlnѲ ………….(4) 

We know grand canonical partition function,  Ѳ (V, T, γ) =  ∑ ∑ e−βENj(V)e−γN jN  

Substituting the value of γ in the above expression we get 

                                    Ѳ (V, T, μ) =  ∑ ∑ e
−

ENj(V)

kBT e
μN

kBT jN  

                        ⇒    Ѳ (V, T, μ) = ∑ Q(N, V, T)N e
μN

KBT 

So Grand canonical partition function can be represented as a canonical partition function plus 

all possible values of N. 



   Gibb’s energy G = μN = U + PV − TS 

                         PV = μ < N > +T < S > −< E > 

               ⇒     PV = kBlnѲ 

Next we consider or next we will discuss micro canonical ensemble. In micro canonical 

ensemble number of particle, volume and energy is fixed. Since E is fixed 

                 E1 = E2 = E3 ……….= EΩ  

all systems are degenerate, very similar to the particle in a 3-d box, having Nx, Ny and Nz values 

are 1, 2, 1 or 2, 1, 1 or 1, 1, 2, so energy of these three states are the same, so they are degenerate. 

So one would expect,  p1 = p2 =  p3 … = pΩ  

                                            Ω(N, V, E)  ⇒ degeneracy 

 In micro canonical ensemble N, V, E is fixed since, E is fixed, all energy values are same, so 

one would expect the probability of having all the states are the same. So we are going to prove 

that the probability of all the states are the same in micro canonical ensemble. 

We know                  S = kBlnW = KBln
N!

n1! n2!
 

               ⇒     S =  kBln N! − kBln n1! −  kBln n2! … .. 

Applying Stirling’s approximation, 

                   ⇒    S =  kB[NlnN − N − ∑ nilnni + ∑ nii ]i  

                  ⇒    S =  kB[NlnN − ∑ nilnni]i  

                          pi = 
ni

N
  ⇒ ni = Npi  

                           S =  kB[NlnN − ∑ (Npi )ln (Npi)]i  

                ⇒   S =  kB[NlnN − ∑ (Npi )lnN − ∑ (Npi )lnpii ]i  

                ⇒   S =  kB[NlnN − NlnN ∑ pi −  N ∑ pi lnpii ]i  

                ⇒   S =  kB[NlnN − NlnN −  N ∑ pi lnpii ]      [∑ pii  = 1] 



                ⇒   S =   NkB ∑ pi lnpii  

Now the statistical entropy,  

                                            S =  −kB ∑ pj lnpj
Ω
j=1  

                                  ⇒   ds = −kB ∑ d(pj lnpj)
Ω
j=1  

                                  ⇒   ds = −kB ∑ dpj (lnpj + 1)Ω
j=1  

For an isolated system, at equilibrium, is one of maximum entropy, this we can learn from 

second law of thermodynamics. Basically we are now  maximizing entropy. So, 

                                          ds = −kB ∑ dpj (lnpj + 1)Ω
j=1   = 0 

Now we will simplify above expression like we have the constant  

                                       ∑ pj 
Ω
j=1 = 1   or   ∑ dpj 

Ω
j=1 = 0 

                                       ⇒  dp1 + ∑ dpj = 0Ω
j=2  

                                 ⇒  dp1 = − ∑ dpj 
Ω
j=2  

Now, if we use this expression in above expression of ds we get 

                            0 = ds = −kB dp1(lnp1 + 1) − kB ∑ dpj (lnpj + 1)Ω
j=2   

                 ⇒   − kB ∑ dpj (lnpj − lnp1)Ω
j=2  = 0 

                 ⇒     lnpj − lnp1 = 0          as dpj ≠ 0 

                 ⇒      pj = p1 

So we get pj = p1, and this is valid for all possible values of j. Thus, we can write 

                                       p1 = p2 =  p3 … = pΩ  

this is known as postulates of equal a priori probabilities which says, for an isolated system in 

equilibrium, all microscopic states corresponding to the same set of a macroscopic observables 

are equally probable.  



We have                ∑ pj 
Ω
j=1 = 1 

                  ⇒   p1 + p2 + p3 … + pΩ = 1 

         Since         p1 = p2 =  p3 … = pΩ 

                                Ωpj = 1 

                  ⇒   pj =  
1

Ω(N,V,E)
  this is micro canonical distribution function 

Now, we arrived at the expression that   p1 = p2 =  p3 … = pΩ by maximizing W or in other 

way in order to have the maximum entropy the probability of the all states must be equal. We 

simply calculate by considering 3 or 4 hypothetical systems. 

We will consider a system with 4 states 

                Case-I :                 p1 = p2 =  p3 =   p4 =  
1

4
 

             Case-II :                 p1 = 
1

2
,  p2 =

1

4
 , p3 =   

1

8
, p4 =  

1

8
 

For Case-I,    S1 =  −kB ∑ pj lnpj
Ω
j=1  

                   S1 =  −kB[p1 lnp1 + p2 lnp2 + p3 lnp3 + p4 lnp4 

                   S1 =  −kB[4 ×
1

4
 ln (

1

4
)] = kBln4 

For Case-II,   S2 =  −kB[
1

2
 ln (

1

2
) +

1

4
 ln (

1

4
) +

1

8
 ln (

1

8
) +

1

8
 ln (

1

8
)] 

           So we get    S1 > S2 

Now, we can calculate different thermodynamical quantities like S 

S =  −kB ∑ pj lnpj
Ω
j=1  

⇒      S =  −kB ∑
1

Ω
 ln (

1

Ω
)Ω

j=1  

⇒      S =  −kBln Ω(N, V, E) 

Next, we can also calculate average pressure. 



dU = TdS – PdV 

since dU = 0, TdS = PdV 

So, P = T(
∂s

∂V
)

E,N
=  kBT (

∂lnΩ

∂V
)

E,N
 

We can also calculate enthalpy H like this.  

Enthalpy H = <E> + <P> V = <E> + kBT (
∂lnΩ

∂V
)

E,N
 

Helmholtz free energy A = < E > −TS = < E >  − kBT ∂lnΩ 


