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Now, we discuss Vibrational partition function which we define as qvib. For this, we consider 

again the simplest model like harmonic oscillator model.  So qvib can be written 

qvib = ∑ e−βϵvib∞
v=0  

Where, ∈vib = (v + 
1

2
)hν 

v goes from 0, 1,2 etc, h is Planck's constant. 

ν = 
1

2π
√

k

μ
 

where k is the bond force constant and μ is the reduced mass of the molecule.  

So if we substitute the expression for vibrational energy into the partition function expression, 

we get                   qvib =  ∑ e
−β(v+

1

2
)hν∞

v=0  

                ⇒     qvib =  e−
βhν

2 ∑ e−βvhν∞
v=0  

                      ⇒     qvib =  e−
βhν

2 (1 + e−βhν + e−2βhν + ⋯ ) 

         Consider      e−βhν = x 



Then 1 + e−βhν + e−2βhν + ⋯ = 1+x+x2….. = 
1

1−x
 

              if x << 1 

              So we can write qvib = 
e

−
βhν

2

1−e−βhν
 

            Consider         θvib = 
hν

kB
 , θvib = vibrational temperature 

                             Then       qvib = 
e

−
θvib 

2T

1−e
−

θvib 
T

 

 

Now, we have got the partition function or vibrational partition function, so we can calculate the 

average vibrational energy of a single harmonic oscillator.  

<∈vib> =  kBT2  (
∂lnqvib

∂T
)

V

 =− (
∂lnqvib

∂β
)

V

 

                                       qvib = 
e

− 
θvib 

2T

1−e
− 

θvib 
T

 

             ⇒       ln qvib = −
θvib 

T
− ln (1 − e− 

θvib 
T ) 

             ⇒           (
∂lnqvib

∂T
)

V

 =  
θvib 

T2
− 

1

1−e
− 

θvib 
T

× (−e− 
θvib 

T ) ×
θvib 

T2
 

So                  <∈vib> =  kB (
θVib

2
+

θvib 

e
θvib 

T −1

) 

If we have ‘N’ number of harmonic oscillators, then 

<∈vib> =  NkB (
θVib

2
+

θvib 

e
θvib 

T −1

) 



Where N = nNA 

            

<∈vib> =  nR (
θVib

2
+

θvib 

e
θvib 

T −1

) 

(CV)vib = (
∂<E>

∂T
)

V
=  R(

θvib 

T
)2  

e
− 

θvib 
T

(1−e
− 

θvib 
T )2

 

Next, we calculate the fraction of molecules in the v-th vibrational energy level and that is fv 

fv =  
e

−βhν(v+
1
2)

qvib
 

⇒    fv = (1 − e− 
θvib 

T ) e− 
v θvib 

T  

So this is the expression for fractional molecules in the v-th vibrational energy level.  

 

Next, we will consider one numerical example to see what is the fractional molecules in a particular 

vibrational energy level. One example is, calculate the fraction of N2 gas molecules in the v =  0 

and v =1 vibrational states at 300 K temperature. Consider, θvib =  3374 K for N2 gas.  

Ans.                e−
θvib 

T =  e
3374K

300K  = 1.31× 10−5 

          For v = 0 state, f0 = (1 − e− 
θvib 

T ) = 1− 1.31× 10−5  ≈ 1 

         For v = 1 state, f1 = (1 − e− 
θvib 

T ) e−
 θvib 

T   ≈ 1.31× 10−5 

So if you plot fvversus v , we get exponentially decay curve. 



                                           

 

So far we have considered canonical ensemble. For canonical ensemble we know number of 

particle, volume of the system and temperature, these three quantities are fixed.  

Now we consider another ensemble which is known as grand canonical ensemble. For grand 

canonical ensemble volume (V), temperature (T) and chemical potential (μ) is fixed, so number 

of molecules can vary from one state to another state.  

                                                                      

So this is the thermal insulation and this is the system. These walls are both heat conducting and 

permeable to the passage of molecules. The grand canonical ensemble is applicable for open kind 

of system and the whole thing is isolated from surroundings.  

 

Now in grand canonical ensemble μ, V, T is fixed. If there is more than one component in the 

system, then the chemical potential, μ of each component is the same from system to system like 

we did for canonical ensemble. Here we define one quantity aNj
 



               Let  aNj
= the number of systems in the ensemble that contains ‘N’ molecules in the 

state ‘j’ in which energy is ENj
(V). It is a function of number of molecules ‘N’ as ‘N’ is permissible 

So, you can write                 ∑ ∑ aNjjN  = A  ………..(1) 

                         A = Total number of systems in the ensemble 

                                             ∑ ∑ aNjjN ENj = E ………..(2) 

                        E = total energy of ensemble 

                                             ∑ ∑ aNjjN Nj = N  …………(3) 

                        N = total number of particles or total number of molecules in the ensemble 

So for any possible distribution like we did for canonical ensemble, the number of states is given 

by, 

                         W({aNj}) = 
A!

∏ ∏ aNj!
J

N

 …………(4) 

So as we did for canonical ensemble, the distribution that maximizes ‘W’ subject to the condition 

or subject to the appropriate constants, we have three constants here. So if we maximize W of 

equation 4 under the constants mentioned above, we get 

                                     aNj
∗ =  e−αe−βϵNje−γN 

 If you go back and check, for canonical ensemble we had α and β two Lagrange’s multiplier 

because we had two constants there. Here we are having three constants α, β and γ, these three 

terms.  

                           ∑ ∑ aNj
∗ = A =  e−α jN ∑ ∑ e−βENj(V)e−γN jN  

             ⇒     e−α =  
A

∑ ∑ e
−βENj(V)

e−γN jN

  

                      aNj
∗ =  

A

∑ ∑ e
−βENj(V)

e−γN jN

 ×  e−βENj(V) e−γN 

             ⇒     pNj(V, T, γ) =  
aNj

∗

A
=  

e
−βENj(V)

 e−γN

∑ ∑ e
−βENj(V)

e−γN jN

 



             ⇒     pNj = 
e

−βENj(V)
 e−γN

Ѳ (V,T,γ)
 

 

This Ѳ is known as grand canonical partition function.  


