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So we will discuss rotational partition function as mentioned before for monatomic gas. There 

are three degrees of freedom like translational degrees of freedom, electronic degrees of 

freedom and nuclear degrees of freedom. So for monatomic molecules there is no rotational or 

vibrational degrees of freedom and we calculated individually the transitional partition 

function, the electronic particular function and the nuclear partition function.  

Now, if you consider the diatomic and poly atomic molecules, we will have two more degrees 

of freedom and those are rotational degrees of freedom and vibrational degrees of freedom. So 

for diatomic and poly atomic molecules there are five degrees of freedom, translational degrees 

of freedom, electronic degrees of freedom, nuclear degrees of freedom, rotational degrees of 

freedom and vibrational degrees of freedom. We will discuss rotational degrees of freedom or 

rotational partition function. 

The rotational energy levels, we consider here the rigid rotor model, it is the simplest model 

one can think of and the energy levels for rigid rotors can be written as, 

                                           ϵrot = 
ℏ

2I
 J(J + 1) 

 ħ = 
h

2π
 , h is planks constant, I is the momentum of the inertial molecule and J is rotational 

quantum number at different rotational level here and the value of J varies from 0, 1, 2 etc. 

First we consider heteronuclear diatomic molecules, for the heteronuclear diatomic molecules 

the degeneracy of J-th level is 2J plus 1.  

We can write,the rotational partition function is, 



                                  qrot = ∑ (2J + 1)e−β ℏ

2π
J(J + 1)

∞

J=0
 ………….(1) 

 Now assume,                      θrot = 
ℏ

2IkB
 = 

hB

kB
 

                                           θrot = rotational temperature 

                                                        B = 
h

8π2I
 

Now, if we substitute the value of theta rotational into q rotational, we get 

                                      qrot = ∑ (2J + 1)e−
θrotJ(J+1)

T

∞

J=0
 …………….(2) 

This is the expression for rotational partition function of heteronuclear diatomic molecule. 

Next, it is found that the value of theta rotational by T is quite small at ordinary temperature 

for diatomic molecules, that do not contain hydrogen atoms, so it has been found that the value 

of the theta rotational by T is very small or quite small at ordinary temperature, like room 

temperature for diatomic molecules that do not contain any hydrogen atoms. 

So, the summation of equation 2 can be replaced by integration at ordinary temperatures, thus 

the equation 2 can be written as 

                                              qrot = ∫ (2J + 1)e−
θrotJ(J+1)

T ⅆJ
∞

0

   …….........(3) 

Now consider,           J(J+1) = x 

                        ⇒       (2J+1)Dj = dx           

When J → 0, x →  0 and J →  ∞, x →  ∞ 

 

  So you can write,       qrot = ∫ e−
θrotx

T ⅆx
∞

0

  



                              ⇒   qrot =  
T

θrot
    …………….(4) 

Now, if you substitute the value of theta rotational in equation 4, we get  

                                       qrot =  
8π2IkBT

h2  

So the average rotational energy of a single rigid rotor is,  

                                   < ϵrot> =  kBT2 (
∂lnqrot

∂T
)

V
 

                Now           N = n NA where n = number of moles 

                                                         NA = Avogadro’s number 

                                   < Erot> = n NA kBT=  n RT as NA kB = R 

                                  So, CV due to rotational motion 

                                            < CV >rot  = (
∂<Erot >

∂T
)

V
 = nR 

 A diatomic molecule has two rotational degrees of freedom and each contributes 
R

2
 to 

< CV
̅̅ ̅ >rot,     < CV

̅̅ ̅ >rot= R, because the rotation along the bond axis does not 

contribute much to the rotational energy. 

Next, we consider the fraction of molecules in the J-th rotational level and if we consider this 

as fJ,then 

                                        fJ = 
(2J+1)ⅇ

−
θrotJ(J+1)

T

qrot
 

                      ⇒    fJ =  (2J + 1)(
θrot

T
)e−

θrotJ(J+1)

T  

                    So the most probable ‘J’ value Jmp can find by differentiating fJwith respect 

to J, 

         
∂fJ

∂J
 = 2 (

θrot

T
) e−

θrotJ(J+1)

T  +  (2J + 1) (
θrot

T
) e−

θrotJ(J+1)

T (2J + 1)(−
θrot

T
) 

So in order to get most probable J value we have to make 
∂fJ

∂J
 = 0 

          0 = 2 (
θrot

T
) e−

θrotJ(J+1)

T  +  (2J + 1) (
θrot

T
) e−

θrotJ(J+1)

T (2J + 1)(−
θrot

T
) 



0 = (
θrot

T
) e−

θrotJ(J+1)

T  [2 −  (2J + 1)2 (
θrot

T
)]  

(2J + 1)2 (
θrot

T
) = 2 

Jmp = (
T

2θrot
)

1
2⁄

−  
1

2
 

 

  

If we plot fJ versus we get J equal to 7 is mostly populated, not J equals to 0. Now we have 

molecules other than hetereonuclear diatomic molecules.  

The general expression for diatomic and linear poly atomic molecules is  

                                                qrot =  
T

σθrot
 

where sigma is the symmetry number and for hetereonuclear diatomic molecules, sigma is 1, 

for homonuclear diatomic molecules, sigma is 2, for symmetrical linear poly atomic molecules 

such as acetylene C2H2, carbon dioxide, etc sigma is 2, for unsymmetrical linear poly atomic 

molecules such as N2O etc sigma is 1. 

Sysmetry number is the number of different ways a molecule can be rotated into a configuration 

indistinguishable from the original one.  

For suppose C2H2, we consider this as Ha − Ca ≡  Cb −  Hb, now if we rotate the molecule, in 

clockwise direction around the perpendicular to the C ≡ C by 180°, we get a configuration 

which is indistinguishable from the original one, so we get two different configuration, if we 

rotate another 180° we get back to original one. If we rotate 360° we get two concentrations, 

that is why the sigma is 2 here and so on.  

 Next we discuss importance of symmetry number in rotational partition function.  

If you go back and check, equations 3 and 4 are applicable only to heteronuclear diatomic 

molecules, that we discussed. The underlying reason is that the wave function of a homonuclear 

diatomic molecule must posseses a certain symmetry with respect to interchange of two 

identical nuclei in the molecule. 

 



This symmetry requirement has a profound effect on the population of the rotational energy 

levels of a homonuclear diatomic molecule. At temperature such that theta rotational is much, 

much lower than T, which we have seen applies to most molecules at ordinary temperatures, 

Q rotational for homonuclear diatomic molecules is like this. Actually this symmetry number 

has profound effect on the population or the rotational energy levels of a molecule, that is why 

symmetry number is very, very important. 

We considered so far rotational partition function for homonuclear diatomic molecules, 

heteronuclear diatomic molecules and linear poly atomic molecules. We will consider the 

rotational partition function for non-linear poly atomic molecules now. 

The rotational properties of non-linear poly atomic molecules depend on the relative 

magnitudes of their principal moments of inertia. For non-linear poly atomic molecules there 

are three rotational degrees of freedom, we will see that also. So the rotational properties, a 

non-linear poly atomic molecules depend on the relative magnitudes of their principal moments 

of inertia. 

If all three principal moments of inertia are equal the molecule is called a spherical top. If two 

of the three principal moments of inertia are equal, the molecule is called a symmetry top. If 

all three principal moments of inertia are different, the molecule is called an asymmetry top, 

so depending on the value of principal moments of inertia, the molecules are classified as 

spherical top molecules, symmetric molecules or asymmetric top molecules. 

Thus, if we define three characteristics rotational temperatures in terms of the three principal 

moments of inertia, we can write 

θrot,j = 
ħ

2IjkB
  where j = A, B, C 

If  θrot,A =  θrot,B =  θrot,C ⇒ Spherical top 

If  θrot,A =  θrot,B ≠  θrot,C ⇒ Symmetric top 

If  θrot,A ≠  θrot,B ≠  θrot,C ⇒ Asymmetric top 

 



  

 

Now, for spherical top molecules the quantum mechanical problem of a spherical top molecule 

can be solved exactly to give,  

                                                 ϵJ =  
J(J+1)ℏ2

2I
 

                                     gJ = (2J + 1)2 where J = 0, 1,2, 3………… 

   the corresponding rotational partition function is  

                                              qrot = ∑ (2J + 1)2e
−

ℏ2J(J+1)

2IkBT

∞

J=0

 

Now for almost all spherical top molecules θrot ≪ T at ordinary temperatures, so the above 

summation can be replace by integration. 

 

                                          qrot =  
1

σ
∫ (2J + 1)2e−

θrotJ(J+1)

T ⅆJ
∞

0

    

This is the expression for rotational partition function for spherical top molecules. 

For θrot ≪ T , the most important values of ‘J’ are large, so, we may neglect ‘1’ compared 

with J. So,  

qrot =  
1

σ
∫ 4J2e−

θrotJ(J+1)

T ⅆJ
∞

0

 

⇒ qrot =  
π

1
2

σ
 (

T

θrot
)

3

2    ⇒ for spherical top molecules. 

For symmetric top molecules the degeneracy factor gJ = 2(2J + 1)and we get  



                            qrot =  
π

1
2

σ
 (

T

θrot,A
)(

T

θrot,C
)

1

2    ⇒ for symmetric top molecules 

   For asymmetric top molecules the degeneracy factor gJ = (2J + 1)and we get  

                           qrot =  
π

1
2

σ
 (

T

θrot,A
)(

T

θrot,B
)

1

2(
T

θrot,C
)

1

2    ⇒ for asymmetric top molecules 

The average rotational energy of a single non-linear poly atomic molecule is  

                                    < ϵrot> =  kBT2 (
∂lnqrot

∂T
)

V
 

For non-linear poly atomic molecule (
∂lnqrot

∂T
)

V
=  

3

2T
 

⇒    < ϵrot> =  kBT2  ×
3

2T
 

⇒       < ϵrot> = 
3

2
 kBT 

For ‘N’ number of  non-linear poly atomic molecule where N = n NA 

< ϵrot> = 
3

2
 NkBT = 3

2 nRT     where N = n NA 

< CV >rot  = 
3

2
 nR     or 

< CV
̅̅ ̅ >rot= 

3

2
 nR     when n = 1 

 

                                            

                                  


