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We know translational partition function is  

                            qtrans = (
2πmkBT

h2 )
3

2⁄
V 

We can rewrite the translational partition function like  

                                                qtrans = 
V

ᴧ3 

where ᴧ = (
h2

2πmkBT
)

1
2⁄

and it has no dimensions, so dimension less quantity. So, lambda has 

dimension of length. Now we will calculate the energy or average energy.  

So, we calculate average translation energy is nothing but 

                                       <Etrans> = N <εtrans> 

So N times epsilon translation average is average translation energy, so epsilon translational is 

the average translational energy of a molecule and it can be writen as 

                             <Etrans> = kBT2 (
∂lnqtr ans

∂T
)

V
 

remember q trans is a function of temperature and volume. 

So, next will calculate average translational energy from the translational partition function. So  

if you take log of q trans we get  



                                    ln qtrans  = 
3

2
ln (

2πmkBT

h2 ) +
3

2
 lnT + ln V  

. Now we will differentiate logarithm of q trans with respect to temperature at constant volume 

and we get 

                                            (
∂lnqtr ans

∂T
)

V
=  

3

2T
         

because the first terms gives you 0, second term gives us 
3

2T
  and third term is also 0. So average 

translational energy of a single particle is 

                               <Etrans> = kBT2 ×  
3

2T
   

                                      ⇒ <Etrans> = 
3

2
 kBT 

Again, classically we can write  

                                        <Etrans> = 
px

2

2m
+

py
2

2m
+

pz
2

2m
 

                                 <Etrans> = 
3p2

2m
 

So, if we equate them we get  

                                          
3p2

2m
=  

3

2
 kBT 

 

So you get     p ~  (mKBT)1/2  

                                     ᴧ = (
h2

2πmkBT
)

1
2⁄

 ~ 
h

p
 

so we get, ᴧ is of the order of h by p, ᴧ is known as thermal de Broglie’s wavelength. 

Next we discuss the significance of lambda. The condition for the applicability of classical or 

Boltzmann statistics is equivalent to the condition that 
ᴧ3

V
 ≪ 1 this suggests that the thermal 

de Broglie wave length must be small compare to the dimensions of the container.  Or in other 



words it is similar to the condition that quantum effects decrease as the de Broglie wave length 

becomes small. Basically 
ᴧ3

V
  is very, very or is much smaller than 1, then classical statistics or 

quantum, or Boltzmann statistics can be applied.Next we consider electronic partition function. 

So we can write  

                                                qelec = ∑i wei e
-βεi 

where wei is the degeneracy of the ith level and εi is the energy of the ith level,  

 If  ε1 = 0 energy then               qelec = we1 + we2 e
-βΔε12 + we3 e

-βΔε13 + …………….. 

                                Where  Δε12 = ε2 – ε1 ,  Δε13  = ε3 – ε1 and  so on 

Neglecting higher terms it reduces  to 

                                    
                         qelec = we1 + we2 e

-βΔε12 

For nuclear partition function            qnucl = ∑i wni e
-βεi 

                
where wni is the degeneracy of the ith nuclear energy level and εi is the energy of the 

ith nuclear energy level,  

                                                   qnucl = wn1e
-βε1 + wn2e

-βε2 + …………….. 

We assume ε1 = 0,  zero energy concept 

                                             qnucl = wn1 + wn2 e
-βΔε12 + wn3 e

-βΔε13 + …………….. 

Δεij in most of the case ~ 106 ev, so qnucl = wn1 

So for ideal monatomic gas the molecular partition function  

                                           q (V, T) = qtrans× qelec× qnuc 

Now we will substitute the values of q trans, q electronic and q nuclear here and get  

                             q (V,T) = (
2πmkBT

h2 )
3

2⁄
V { we1 + we2 e

-βΔε12 } wn1 

So this is the molecule partition function for ideal monatomic gas.
 

From here, we calculate total partition function or partition function for N number of particles. 

by using  

                                  Q (N, V, T) = {q (V, T)}N or {q (V, T)}N / N! 



 depending on whether the particles are distinguishable or indistinguishable. So once we get 

capital Q, now we can calculate all macroscopic or thermodynamic quantities.  

Next, we discuss thermodynamic functions. Here we need to remember the contribution of the 

electronic degrees of freedom to the energy is very small at ordinary temperatures. Since, we 

have neglected intermolecular potential, the contribution of the intermolecular potential to the 

total energy of the gas can be neglected, or can be omitted.  

                                  Q (N, V, T) = {q (V, T)}N = qtrans× qelec× qnucl 

Neglecting  qelec,  qnuc, we get 

                                 ln Q (N, V, T) = N ln qtrans (V, T) 

                             ln Q (N, V, T) = N ln {(
2πmkBT

h2 )
3

2⁄
V} 

                             ln Q (N, V, T) = 
3

2
 N ln

2πmkB 

h2
+

3

2
 N lnT + N lnV  

Now, we can calculate average energy.  

                                                 <E>  =  kBT2 (
∂lnQ

∂T
)

V

  

And                      ln Q = 
3

2
 N ln

2πmkB 

h2
+

3

2
 N lnT + N lnV  

 

Now we differentiate lnQ with respect to temperature at constant volume, we get, 

                                                  (
∂lnQ

∂T
)

V

=   3N

2T
 

     Now                                <E> = kBT2 ×  
3N

2T
 

                                      ⇒  <E> = 
3

2
 N kBT 

 This is the average energy and this average energy is nothing but the kinetic energy of the gas 

molecules.  



Now 

                                     <E> = 
3

2
 N kBT =  

3

2
 nRT           

        Where n = number of moles 

                                         N = nNA    ,       NA kB = R 

             

.So what is the contribution of CV here?  

                                                   CV = (
∂<E>

∂T
)

V

 

 The CV of monatomic gas is  
3 

2
nR or molar heat capacity or molar heat capacity CV

̅̅ ̅ = 
3 

2
R 

where n is number of mole is 1.  

Now, we calculate average pressure.  

                                         <P> = kBT (
∂lnQ

∂V
)

N,T
 

If we differentiate ln Q with respect to V at constant N and T, we get  

                                              (
∂lnQ

∂V
)

N,T

=  N

V
 

If you substitute that there, we get  

                                              <P>V = kBT = nRT 

This is the ideal gas equation that you have studied.  

Similarly we can calculate, 

                                                 A = − kBT ln Q  

 



Next we discuss one very interesting thing that is known as Sackur-Tetrode equation. It is a 

classical problem related to distinguishable and indistinguishable particles. So by using Sackur-

Tetrode equation we basically solve, the classical problem Gibbs Paradox. We know, 

                                      S = kB ln Q + kBT (
∂lnQ

∂T
)

N,V

………………..(1) 

                                                            Q = 
qtrans

N!
 

we are considering translational degrees of  freedom here and the particles are 

indistinguishable. 

So it gives us  

                                             ln Q = N ln qtrans – ln N! 

                                       ln Q = N ln {(
2πmkBT

h2 )
3

2⁄
V} − ln N! 

 we also know that  

                                                  (
∂lnQ

∂T
)

N,V
=  

3N

2T
 

If we substitute the value of ln Q and (
∂lnQ

∂T
)

N,V
 in equation 1, we obtain 

                               S = kB [ N ln {(
2πmkBT

h2 )
3

2⁄
V} − ln N! ] + kBT × 

3N

2T
 

it further reduces to  

                                 S = NkB  ln {(
2πmkBT

h2 )
3

2⁄ Vⅇ
5

2⁄

N
} ………………(2) 

this is Sackur-Tetrode equation 

What is Gibbs Paradox? Consider two cases, suppose case 1 we have here a container which 

contains, two compartments and the volume of both the compartment is V and both of them 

contain N number of ideal gas molecules but in one compartment we have gas A and another 



compartment we have gas B and for simplicity you consider that they are ideal monatomic 

gases. 

So here the catch is the density of the gas of both the compartments are equal, gas density 

means number density we are talking about here, so number of particles per unit volume are 

equal in both the compartments. Suppose, this thing is our initial states, so initially we have a 

container in which there is a partition there, which makes or which divides the container into 

two equal compartments and the volume of the each compartment is V and both the 

compartments campaign same number of particles N, but in one compartment we have gas 

molecule A and in other compartment we have gas molecule B, so this is our initial state. 

Now, if we remove the partition, what will happen? We have N number of gas molecules of A 

and N number of gas molecules B, both are present in 2V volumes, so this is our final volumes, 

they will mix, so this will final state. If we remove the partition they will mix and we know this 

mixing process is entropy driven and ΔS final is greater than 0, it has some value. 

Next, we consider another case with very similar experiment, but we will use same gas 

molecules in both the compartments. So in case two we have very similar arrangement, N 

number of particles, volume V and we have gas molecule A here and here also same gas 

molecule in both the compartment, again, if you remove the partition, what we get? They will 

mix, so we have 2N number of gas molecules A in 2V volume. 

So initially we had a container in which there is a partition which divides the container into 

two compartments of equal volume V and in both the compartments we have N number of 

particles A and if you remove the partition they will mix and what is the value of ΔSmix here or 

ΔSfinal here is 0, so mathematically we will prove this with the help of Sackur-Tetrode equation. 

So you can see tha in both experiments we have very similar arrangements except that in first 

case we considered two different gases and in second case we consider same gas molecules but 

in first case we get positive entropy mixing, and in second case there is no entropy change if 

you remove the partition.  

So we will start with case 1, for case 1 before mixing the entropy of the initial state is nothing 

but entropy for gas A in the initial state plus entropy of gas B at initial state and if we now use 

the Sackur-Tetrode equation here, we can write, 

                                



 

    Sinitial = (SA)initial + (SB)initial 

                      = NkB [ lnV + 
3

2
 lnT + 

3

2
ln (

2πmAkB

h2 ) − lnN + 
5

2
  ] ⇒ for gas A 

               + NkB [ lnV + 
3

2
 lnT + 

3

2
ln (

2πmBkB

h2 ) − lnN + 
5

2 
 ]  ⇒ for gas B 

                      

 

Once we get the value of S final and S initial, the difference between them gives us the entropy 

of mixing or ΔSfinal.  

                               ΔSfinal = NkB [ ln2V + 
3

2
 lnT + 

3

2
ln (

2πmAkB

h2 ) − lnN + 
5

2
  ] + 

                                             NkB [ ln2V + 
3

2
 lnT + 

3

2
ln (

2πmBkB

h2 ) − lnN + 
5

2
 ] 

                                             ΔSmix  = ΔS = Sinitial – Sfinal 

                                              Smix = 2Nr ln2   > 0 

For case 2,  

                               Sinitial = 2NkB [ lnV + 
3

2
 lnT + 

3

2
ln (

2πmAkB

h2 ) − lnN! + 
5

2
  ] 

                                              Sfinal = 2NkB [ ln2V + 
3

2
 lnT + 

3

2
ln (

2πmAkB

h2 ) − ln (2N!) + 
5

2
  ] 

                                      ΔSmix = ΔS = Sinitial – Sfinal = 0 

Gibbs Paradox solved by using Sackur-Tetrode equation.  


