
Thermodynamics: Classical to Statistical 

Prof. Sandip Paul 

Department of Chemistry 

Indian Institute of Technology Guwahati 

Lecture 16 

Introduction to Molecular Partition Function 
 

 

 

The probability in canonical ensemble, 

pj (N, V, T) = ∑j e
-βEj(N,V)  where β = 

1

kBT
 

Ej(N,V)  = ϵ
1j

 + ϵ2j + …………+ ϵNj 

Where 
ϵ
1j = energy of the particle ‘1’ in the j-th state 

ϵ
2j = energy of the particle ‘2’ in the j-th state and so on 

Now, if we substitute the value of Ej into pj or if substitute directly the value of Ej into the canonical 

partition function Q,   

Q (N, V, T)  = ∑j e
-βEj(N,V) 

⇒        Q (N, V, T)  = ∑j e−β(ϵ1j+ϵ2j+⋯+ϵNj )
 

                                        ⇒      Q (N, V, T)  = ∑j e−βϵ1j
   ∑j e−βϵ2j … … … …  ∑j e−βϵNj 

  



 

Now, if all the particles are the same, then it is not necessary to level them, so we can omit 1, 2, 3 

those terms. We can write  

Q (N, V, T)  = ∑j e−βϵj
   ∑j e−βϵj … … … …  ∑j e−βϵj [N  number of terms] 

Q (N, V, T)  = ( ∑j e
−βϵj(V)) N 

Q (N, V, T)  = qN 

                          Where q is molecular partition function 

q = ( ∑j e
−βϵj(V)) 

                 for distinguishable particles Q (N, V, T)  =  
qN

N!
 

So, we reduces the N body problem into N number of single body problems. 

So next we will discuss more about molecular partition function. Suppose we have total N number 

of distinguishable particles, out of these capital N number of distinguishable particles, out of N 

number of particles, n1 number of particles are present in energy state 
ϵ
1. similarly, n2 number of 

particles are present in energy state 
ϵ
2 and so on. We can write  

∑ nii  = N = constant …………..(1) 

∑ nii ∈i = E = constant …………(2) 

 

 

We are distributing capital N number of particles in different energy state. So a general 

configuration can be achieved in W different ways. So we can write  

                                     W(n1, n2, … ..) = 
N!

𝑛1! 𝑛2!
 …………..(3) 



Suppose for simplicity, we have 3 distinguishable particles, rather we can consider 3 balls red, we 

say red is R, blue, we denote blue as B and we have yellow ball and we define yellow by Y and 

we have 3 baskets. In first case we have all 3 balls in basket 1, we consider 3 basket as b1, b2 and 

b3. 

Now  

Case I.  suppose we consider that all 3 baskets are present in basket 1. 

b1 b2 b3 

R B Y   

 

                                             So,       W = 
3

3! × 0! ×0!
 = 1 

Case II.  Two balls are present in b1 and 1 ball is present in basket b2. Let us see how many ways 

we can put.                 

 

           

                                    

                                            So            W = 
3

2! × 1! ×0!
 = 3 

 

Case III. Each basket contains one ball. 

 

b1 b2 b3 

  R B Y 

  b1 b2  b3 

 BY   R   

   b1    b2    b3 

  R Y     B  

   b1    b2    b3 

  R B     Y  

b1 b2 b3 

B Y R 

b1 b2 b3 

Y B R 



 

 

                                                 

 

 

                                           So,              W = 
3

1! × 1! ×1!
 = 6 

So, higher the weight W, higher will be the probability of the system to be found in the particular 

configuration, but equations 1 and 2 must be satisfied. 

                                          So                       W =  
N!

𝑛1! 𝑛2!
  

ln W = ln N! − ln n1! −  ln n2! … … … … … 

by using Stirling approximation that is ln x! = x ln x – x, we get 

                                            ln W = N ln N – N − ∑i (niln ni − ni) 

                                      ln W = N ln N – N − ∑i niln ni −  ∑i ni 

                                     ln W = N ln N – N − ∑i niln ni −  N 

                                     ln W = N ln N –  ∑i niln ni  

so in order to get the configuration for which W has its maximum we need to do differentiation 

dln W = d(N ln N) –  ∑i niln dni 

dln W = ∑i (
∂lnw

∂ni
) dni 

                                 Again,          ∑i ni= N = constant 

b1 b2 b3 

 B R Y 

b1 b2 b3 

Y R B 

b1 b2 b3 

R Y B 



                                      So,           ∑i dni = 0 

                                      Similarly, ∑ nii ∈i = E = constant 

                                      ⇒   ∑ ∈i dnii  = 0 

                                  dln W = ∑i (
∂lnw

∂ni
) +  α −  β ∈i  ∫ dni  

                                           where α and – β are Lagrange’s multipliers.  

                                               Since, dni ≠ 0 

∑i (
∂lnw

∂ni
) +  α −  β ∈i ≠ 0 

This is true for every ‘i’ value 

⇒  − ln ni + 1 +  α −  β ∈i = 0 

1 can be neglected in comparison to ni 

⇒  − ln ni +  α −  β ∈i = 0 

⇒   ni = eα e−βϵi  

Now    ∑i ni= N 

⇒   ∑i eα e−βϵi  = N 

⇒    eα =  
N

∑ e−βϵiN
i

 

ni =  
Ne−βϵi

∑ e−βϵii
  [ here ‘i’ is state] 

⇒     
ni

N
= pi =  

e−βϵi

∑ e−βϵii
  ⇒ This is Boltzman distribution law 



If we consider degeneracy we get, 

                                      
ni

N
=  

gie−βϵi

∑ gie−βϵii 
   [where gi is the degeneracy of ith state] 

                                         Q (N, V, T) = ∑j e
-βEj(N,V) 

                                       
 ⇒     Q (N, V, T) = qN  for distinguishable particles 

                                                 q = ∑j e−βϵi (V) 

To calculate partition function of N number of particles or capital Q we need to calculate q 

because we decompose the N body problem into N number of single body problems. Once we 

get the capital Q we can calculate different thermodynamic quantities. 

So our goal at this moment is to calculate q or molecular partition function. So for this we consider 

the simplest system one can think of that is ideal mono atomic gas.  

So next we discuss ideal mono atomic gas. A mono atomic gas has translational, electronic and 

nuclear degrees of freedom. The translational Hamiltonian is separable from the electronic and 

nuclear degrees of freedom and electronic and nuclear Hamiltonians are separable to a very good 

approximation. So, we can write  

                           q (V, T) = qtrans qelec qnucl 

                                      

while qtrans is the translational partition function, qelec is electronic partition function and qnucl is 

nuclear partition function.  

So once we calculate q trans, q electronic and q nuclear we can calculate q for ideal mono atomic 

gas. In order to calculate the translational partition function, we consider particle in 3 dimensional 

box of edge length ‘a’. So the expression for energy in particle in 3 dimensional box is 

ϵnx,ny,nz
=  (

nx
2+ny

2+nz
2

8ma2 )h2 



qtrans = ∑ ∑ ∑ e
−β∈nxnynz∞

nz=1
∞
ny=1

∞
nx=1

 

Now, if we substitute the values of epsilon nx, ny, nz, here we get 

                  qtrans = ∑ e
−

βnx
2h2

8ma2  ∑ e
−

βny
2h2

8ma2  ∑ e
−

βnz
2h2

8ma2∞
nz=1

∞
ny=1

∞
nx=1

 

qtrans = (∑ e
−

βn2h2

8ma2  )∞
n=1

3 

                                     The power 3 represents the dimensionality of the box 

Now for or at room temperature the successive terms in the summation differ so little from each 

other that the terms vary essentially continuously and the summation can be replaced by integral 

or integration.  

qtrans(V, T) = (∫ e
−

βn2h2

8ma2  dn) 
∞

0
3 

qtrans(V, T) =  (
2πmkBT

h2
)

3
2⁄

V 

Where V = volume of the box = a3 

Suppose      Λ = (
h2

2πmkBT
)

1
2⁄

 

qtrans =  
V

Λ3
 

This is the expression for translational partition function. 

Unit of Λ 

Λ = (
h2

2πmkBT
)

1
2⁄

 

So Λ has dimension of length. 


